ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Cold Molecular Gas Reservoirs in z~3.4 Submillimeter Galaxies

140   0   0.0 ( 0 )
 نشر من قبل Dominik Riechers
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of spatially resolved CO(1-0) emission in the z~3.4 submillimeter galaxies (SMGs) SMM J09431+4700 and SMM J13120+4242, using the Expanded Very Large Array (EVLA). SMM J09431+4700 is resolved into the two previously reported millimeter sources H6 and H7, separated by ~30kpc in projection. We derive CO(1-0) line luminosities of L(CO 1-0) = (2.49+/-0.86) and (5.82+/-1.22) x 10^10 K km/s pc^2 for H6 and H7, and L(CO 1-0) = (23.4+/-4.1) x 10^10 K km/s pc^2 for SMM J13120+4242. These are ~1.5-4.5x higher than what is expected from simple excitation modeling of higher-J CO lines, suggesting the presence of copious amounts of low-excitation gas. This is supported by the finding that the CO(1-0) line in SMM J13120+4242, the system with lowest CO excitation, appears to have a broader profile and more extended spatial structure than seen in higher-J CO lines (which is less prominently seen in SMM J09431+4700). Based on L(CO 1-0) and excitation modeling, we find M_gas = 2.0-4.3 and 4.7-12.7 x 10^10 Msun for H6 and H7, and M_gas = 18.7-69.4 x 10^10 Msun for SMM J13120+4242. The observed CO(1-0) properties are consistent with the picture that SMM J09431+4700 represents an early-stage, gas-rich major merger, and that SMM J13120+4242 represents such a system in an advanced stage. This study thus highlights the importance of spatially and dynamically resolved CO(1-0) observations of SMGs to further understand the gas physics that drive star formation in these distant galaxies, which becomes possible only now that the EVLA rises to its full capabilities.



قيم البحث

اقرأ أيضاً

We report the detection of CO(1-0) emission in the strongly lensed high-redshift quasars IRAS F10214+4724 (z=2.286), the Cloverleaf (z=2.558), RX J0911+0551 (z=2.796), SMM J04135+10277 (z=2.846), and MG 0751+2716 (z=3.200), using the Expanded Very La rge Array and the Green Bank Telescope. We report lensing-corrected CO(1-0) line luminosities of L(CO) = 0.34-18.4 x 10^10 K km/s pc^2 and total molecular gas masses of M(H2) = 0.27-14.7 x 10^10 Msun for the sources in our sample. Based on CO line ratios relative to previously reported observations in J>=3 rotational transitions and line excitation modeling, we find that the CO(1-0) line strengths in our targets are consistent with single, highly-excited gas components with constant brightness temperature up to mid-J levels. We thus do not find any evidence for luminous extended, low excitation, low surface brightness molecular gas components. These properties are comparable to those found in z>4 quasars with existing CO(1-0) observations. These findings stand in contrast to recent CO(1-0) observations of z~2-4 submillimeter galaxies (SMGs), which have lower CO excitation and show evidence for multiple excitation components, including some low-excitation gas. These findings are consistent with the picture that gas-rich quasars and SMGs represent different stages in the early evolution of massive galaxies.
We present CO(1-0) observations of the high-redshift quasi-stellar objects (QSOs) BR 1202-0725 (z=4.69), PSS J2322+1944 (z=4.12), and APM 08279+5255 (z=3.91) using the NRAO Green Bank Telescope (GBT) and the MPIfR Effelsberg 100m telescope. We detect , for the first time, the CO ground-level transition in BR 1202-0725. For PSS J2322+1944 and APM 08279+5255, our observations result in line fluxes that are consistent with previous NRAO Very Large Array (VLA) observations, but they reveal the full line profiles. We report a typical lensing-corrected velocity-integrated intrinsic CO(1-0) line luminosity of L(CO) = 5 x 10^10 K km/s pc^2 and a typical total H_2 mass of M(H2) = 4 x 10^10 M_sun for the sources in our sample. The CO/FIR luminosity ratios of these high-z sources follow the same trend as seen for low-z galaxies, leading to a combined solution of log(L_FIR) = (1.39 +/- 0.05) x log(L(CO))-1.76. It has previously been suggested that the molecular gas reservoirs in some quasar host galaxies may exhibit luminous, extended CO(1-0) components that are not observed in the higher-J CO transitions. Utilizing the line profiles and the total intensities of our observations and large velocity gradient (LVG) models based on previous results for higher-J CO transitions, we derive that emission from all CO transitions is described well by a single gas component where all molecular gas is concentrated in a compact nuclear region. Thus, our observations and models show no indication of a luminous extended, low surface brightness molecular gas component in any of the high-redshift QSOs in our sample. If such extended components exist, their contribution to the overall luminosity is limited to at most 30%.
Observations using the 7 mm receiver system on the Australia Telescope Compact Array have revealed large reservoirs of molecular gas in two high-redshift radio galaxies: HATLAS J090426.9+015448 (z = 2.37) and HATLAS J140930.4+003803 (z = 2.04). Optic ally the targets are very faint, and spectroscopy classifies them as narrow-line radio galaxies. In addition to harbouring an active galactic nucleus the targets share many characteristics of sub-mm galaxies. Far-infrared data from Herschel-ATLAS suggest high levels of dust (>10^9 M_solar) and a correspondingly large amount of obscured star formation (~1000 M_solar / yr). The molecular gas is traced via the J = 1-0 transition of 12CO, its luminosity implying total H_2 masses of (1.7 +/- 0.3) x 10^11 and (9.5 +/- 2.4) x 10^10 (alpha_CO/0.8) M_solar in HATLAS J090426.9+015448 and HATLAS J140930.4+003803 respectively. Both galaxies exhibit molecular line emission over a broad (~1000 km/s) velocity range, and feature double-peaked profiles. We interpret this as evidence of either a large rotating disk or an on-going merger. Gas depletion timescales are ~100 Myr. The 1.4 GHz radio luminosities of our targets place them close to the break in the luminosity function. As such they represent `typical z > 2 radio sources, responsible for the bulk of the energy emitted at radio wavelengths from accretion-powered sources at high redshift, and yet they rank amongst the most massive systems in terms of molecular gas and dust content. We also detect 115 GHz rest-frame continuum emission, indicating a very steep high-radio-frequency spectrum, possibly classifying the targets as compact steep spectrum objects.
We present ALMA CO(2-1) spectroscopy of 6 massive (log$_{10}$M$_{rm{*}}/rm{M}_odot>$11.3) quiescent galaxies at $zsim1.5$. These data represent the largest sample using CO emission to trace molecular gas in quiescent galaxies above $z>1$, achieving a n average 3$sigma$ sensitivity of M$_{rm{H_{2}}}sim10^{10}rm{M}_odot$. We detect one galaxy at 4$sigma$ significance and place upper limits on the molecular gas reservoirs of the other 5, finding molecular gas mass fractions M$_{rm{H_{2}}}$/M$_{rm{*}}$=f$_{rm{H_{2}}}<2-6$% (3$sigma$ upper limits). This is 1-2 orders of magnitude lower than coeval star-forming galaxies at similar stellar mass, and comparable to galaxies at $z=0$ with similarly low sSFR. This indicates that their molecular gas reservoirs were rapidly and efficiently used up or destroyed, and that gas fractions are uniformly low ($<$6%) despite the structural diversity of our sample. The implied rapid depletion time of molecular gas (t$_{rm{dep}}<0.6$ Gyr) disagrees with extrapolations of empirical scaling relations to low sSFR. We find that our low gas fractions are instead in agreement with predictions from both the recent SIMBA cosmological simulation, and from analytical bathtub models for gas accretion onto galaxies in massive dark matter halos (log$_{10}M_{rm{halo}}/rm{M}_odotsim14$ at $z=0$). Such high mass halos reach a critical mass of log$_{10}M_{rm{halo}}/rm{M}_odot>12$ by $zsim4$ that halt the accretion of baryons early in the Universe. Our data is consistent with a simple picture where galaxies truncate accretion and then consume the existing gas at or faster than typical main sequence rates. Alternatively, we cannot rule out that these galaxies reside in lower mass halos, and low gas fractions may instead reflect either stronger feedback, or more efficient gas consumption.
We report on the detection of bright CO(4-3) line emission in two powerful, obscured quasars discovered in the SWIRE survey, SW022513 and SW022550 at z>3.4. We analyze the line strength and profile to determine the gas mass, dynamical mass and the ga s dynamics for both galaxies. In SW022513 we may have found the first evidence for a molecular, AGN-driven wind in the early Universe. The line profile in SW022513 is broad (FWHM = 1000 km/s) and blueshifted by -200 km/s relative to systemic (where the systemic velocity is estimated from the narrow components of ionized gas lines, as is commonly done for AGN at low and high redshifts). SW022550 has a more regular, double-peaked profile, which is marginally spatially resolved in our data, consistent with either a merger or an extended disk. The molecular gas masses, 4x10^10 Msun, are large and account for <30% of the stellar mass, making these obscured QSOs as gas rich as other powerful CO emitting galaxies at high redshift, i.e., submillimeter galaxies. Our sources exhibit relatively lower star-formation efficiencies compared to other dusty, powerful starburst galaxies at high redshift. We speculate that this could be a consequence of the AGN perturbing the molecular gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا