ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is to define the concept of multi-Dirac structures and to describe their role in the description of classical field theories. We begin by outlining a variational principle for field theories, referred to as the Hamilton-Pontryagin principle, and we show that the resulting field equations are the Euler-Lagrange equations in implicit form. Secondly, we introduce multi-Dirac structures as a graded analog of standard Dirac structures, and we show that the graph of a multisymplectic form determines a multi-Dirac structure. We then discuss the role of multi-Dirac structures in field theory by showing that the implicit field equations obtained from the Hamilton-Pontryagin principle can be described intrinsically using multi-Dirac structures. Furthermore, we show that any multi-Dirac structure naturally gives rise to a multi-Poisson bracket. We treat the case of field theories with nonholonomic constraints, showing that the integrability of the constraints is equivalent to the integrability of the underlying multi-Dirac structure. We finish with a number of illustrative examples, including time-dependent mechanics, nonlinear scalar fields and the electromagnetic field.
Dirac structures are geometric objects that generalize both Poisson structures and presymplectic structures on manifolds. They naturally appear in the formulation of constrained mechanical systems. In this paper, we show that the evolution equa- tion
We prove Liouville theorems for Dirac-harmonic maps from the Euclidean space $R^n$, the hyperbolic space $H^n$ and a Riemannian manifold $mathfrak{S^n}$ ($ngeq 3$) with the Schwarzschild metric to any Riemannian manifold $N$.
By resorting to Noethers Second Theorem, we relate the generalized Bianchi identities for Lagrangian field theories on gauge-natural bundles with the kernel of the associated gauge-natural Jacobi morphism. A suitable definition of the curvature of ga
In this paper we introduce the Dirac and spin-Dirac operators associated to a connection on Riemann-Cartan space(time) and standard Dirac and spin-Dirac operators associated with a Levi-Civita connection on a Riemannian (Lorentzian) space(time) and c
In this paper, we make a generalization of Rouths reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained