ترغب بنشر مسار تعليمي؟ اضغط هنا

Cell Count Moments in the Halo Model

40   0   0.0 ( 0 )
 نشر من قبل James N. Fry
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study cell count moments up to fifth order of the distributions of haloes, of halo substructures as a proxy for galaxies, and of mass in the context of the halo model and compare theoretical predictions to the results of numerical simulations. On scales larger than the size of the largest cluster, we present a simple point cluster model in which results depend only on cluster-cluster correlations and on the distribution of the number of objects within a cluster, or cluster occupancy. The point cluster model leads to expressions for moments of galaxy counts in which the volume-averaged moments on large scales approach those of the halo distribution and on smaller scales exhibit hierarchical clustering with amplitudes $S_k$ determined by moments of the occupancy distribution. In this limit, the halo model predictions are purely combinatoric, and have no dependence on halo profile, concentration parameter, or potential asphericity. The full halo model introduces only two additional effects: on large scales, haloes of different mass have different clustering strengths, introducing relative bias parameters; and on the smallest scales, halo structure is resolved and details of the halo profile become important, introducing shape-dependent form factors. Because of differences between discrete and continuous statistics, the hierarchical amplitudes for galaxies and for mass behave differently on small scales even if galaxy number is exactly proportional to mass, a difference that is not necessarily well described in terms of bias.

قيم البحث

اقرأ أيضاً

We compare three methods to measure the count-in-cell probability density function of galaxies in a spectroscopic redshift survey. From this comparison we found that when the sampling is low (the average number of object per cell is around unity) it is necessary to use a parametric method to model the galaxy distribution. We used a set of mock catalogues of VIPERS, in order to verify if we were able to reconstruct the cell-count probability distribution once the observational strategy is applied. We find that in the simulated catalogues, the probability distribution of galaxies is better represented by a Gamma expansion than a Skewed Log-Normal. Finally, we correct the cell-count probability distribution function from the angular selection effect of the VIMOS instrument and study the redshift and absolute magnitude dependency of the underlying galaxy density function in VIPERS from redshift $0.5$ to $1.1$. We found very weak evolution of the probability density distribution function and that it is well approximated, independently from the chosen tracers, by a Gamma distribution.
The halo mass function (HMF) is a critical element in cosmological analyses of galaxy cluster catalogs. We quantify the impact of uncertainties in HMF parameters on cosmological constraints from cluster catalogs similar to those from Planck, those ex pected from the Euclid, Roman and Rubin surveys, and from a hypothetical larger future survey. We analyse simulated catalogs in each case, gradually loosening priors on HMF parameters to evaluate the degradation in cosmological constraints. While current uncertainties on HMF parameters do not substantially impact Planck-like surveys, we find that they can significantly degrade the cosmological constraints for a Euclid-like survey. Consequently, the current precision on the HMF will not be sufficient for Euclid (or Roman or Rubin) and possible larger surveys. Future experiments will have to properly account for uncertainties in HMF parameters, and it will be necessary to improve precision of HMF fits to avoid weakening constraints on cosmological parameters.
We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body sim ulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a $sim 20%$ accuracy up to very non-linear scales of $k=10~h/$Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range $k=0.5-1~h/$Mpc where the 1-halo and 2-halo terms are comparable and are present also in a massless neutrino cosmology. However, at scales $k<0.2~h/$Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of $<0.3$ eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to $k=1~h/$Mpc with $sim$ 30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.
Halo occupation distribution (HOD) models describe the number of galaxies that reside in different haloes, and are widely used in galaxy-halo connection studies using the halo model (HM). Here, we introduce and study HOD response functions $R_mathcal {O}^g$ that describe the response of the HODs to long-wavelength perturbations $mathcal{O}$. The linear galaxy bias parameters $b_mathcal{O}^g$ are a weighted version of $b_mathcal{O}^h + R_mathcal{O}^g$, where $b_mathcal{O}^h$ is the halo bias, but the contribution from $R_mathcal{O}^g$ is routinely ignored in the literature. We investigate the impact of this by measuring the $R_mathcal{O}^g$ in separate universe simulations of the IllustrisTNG model for three types of perturbations: total matter perturbations, $mathcal{O}=delta_m$; baryon-CDM compensated isocurvature perturbations, $mathcal{O}=sigma$; and potential perturbations with local primordial non-Gaussianity, $mathcal{O}propto f_{rm NL}phi$. Our main takeaway message is that the $R_mathcal{O}^g$ are not negligible in general and their size should be estimated on a case-by-case basis. For stellar-mass selected galaxies, the responses $R_phi^g$ and $R_sigma^g$ are sizeable and cannot be neglected in HM calculations of the bias parameters $b_phi^g$ and $b_sigma^g$; this is relevant to constrain inflation using galaxies. On the other hand, we do not detect a strong impact of the HOD response $R_1^g$ on the linear galaxy bias $b_1^g$. These results can be explained by the impact that the perturbations have on stellar-to-total-mass relations. We also look into the impact on the bias of the gas distribution and find similar conclusions. We show that a single extra parameter describing the overall amplitude of $R_mathcal{O}^g$ recovers the measured $b_mathcal{O}^g$ well, which indicates that $R_mathcal{O}^g$ can be easily added to HM/HOD studies as a new ingredient.
130 - Giuseppe Murante 2010
We provide a set of numerical N-body simulations for studying the formation of the outer Milky Wayss stellar halo through accretion events. After simulating minor mergers of prograde and retrograde orbiting satellite halo with a Dark Matter main halo , we analyze the signal left by satellite stars in the rotation velocity distribution. The aim is to explore the orbital conditions where a retrograde signal in the outer part of the halo can be obtained, in order to give a possible explanation of the observed rotational properties of the Milky Way stellar halo. Our results show that, for satellites more massive than $sim 1/40$ of the main halo, the dynamical friction has a fundamental role in assembling the final velocity distributions resulting from different orbits and that retrograde satellites moving on low inclination orbits deposit more stars in the outer halo regions end therefore can produce the counter-rotating behavior observed in the outer Milky Way halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا