ﻻ يوجد ملخص باللغة العربية
We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a $sim 20%$ accuracy up to very non-linear scales of $k=10~h/$Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range $k=0.5-1~h/$Mpc where the 1-halo and 2-halo terms are comparable and are present also in a massless neutrino cosmology. However, at scales $k<0.2~h/$Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of $<0.3$ eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to $k=1~h/$Mpc with $sim$ 30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.
Recent advances in cosmic observations have brought us to the verge of discovery of the absolute scale of neutrino masses. Nonzero neutrino masses are known evidence of new physics beyond the Standard Model. Our understanding of the clustering of mat
We have updated the constraints on flavour universal neutrino self-interactions mediated by a heavy scalar, in the effective 4-fermion interaction limit. We use the relaxation time approximation to modify the collisional neutrino Boltzmann equations,
We use a suite of N-body simulations that incorporate massive neutrinos as an extra-set of particles to investigate their effect on the halo mass function. We show that for cosmologies with massive neutrinos the mass function of dark matter haloes se
We explore the cosmological signals of theories in which the neutrinos decay into invisible dark radiation after becoming non-relativistic. We show that in this scenario, near-future large scale structure measurements from the Euclid satellite, when
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such