ﻻ يوجد ملخص باللغة العربية
We present a direct reduction from k-player games to 2-player games that preserves approximate Nash equilibrium. Previously, the computational equivalence of computing approximate Nash equilibrium in k-player and 2-player games was established via an indirect reduction. This included a sequence of works defining the complexity class PPAD, identifying complete problems for this class, showing that computing approximate Nash equilibrium for k-player games is in PPAD, and reducing a PPAD-complete problem to computing approximate Nash equilibrium for 2-player games. Our direct reduction makes no use of the concept of PPAD, thus eliminating some of the difficulties involved in following the known indirect reduction.
We prove that computing a Nash equilibrium of a two-player ($n times n$) game with payoffs in $[-1,1]$ is PPAD-hard (under randomized reductions) even in the smoothed analysis setting, smoothing with noise of constant magnitude. This gives a strong n
Data-driven modeling increasingly requires to find a Nash equilibrium in multi-player games, e.g. when training GANs. In this paper, we analyse a new extra-gradient method for Nash equilibrium finding, that performs gradient extrapolations and update
We study the mechanism design problem of scheduling unrelated machines and we completely characterize the decisive truthful mechanisms for two players when the domain contains both positive and negative values. We show that the class of truthful mech
Nash equilibrium is a central concept in game theory. Several Nash solvers exist, yet none scale to normal-form games with many actions and many players, especially those with payoff tensors too big to be stored in memory. In this work, we propose an
Computing Nash equilibrium in bimatrix games is PPAD-hard, and many works have focused on the approximate solutions. When games are generated from a fixed unknown distribution, learning a Nash predictor via data-driven approaches can be preferable. I