ﻻ يوجد ملخص باللغة العربية
We study the low energy spin excitations of zigzag graphene nanoribbons of varying width. We find their energy dispersion at small wave vector to be dominated by antiferromagnetic correlations between the ribbons edges, in accrodance with previous calculations. We point out that spin wave lifetimes are very long due to the semi-conducting nature of the electrically neutral nanoribbons. However, application of very modest gate voltages cause a discontinuous transition to a regime of finite spin wave lifetime. By further increasing doping the ferromagnetic alignments along the edge become unstable against transverse spin fluctuations. This makes the experimental detection of ferromagnetism is this class of systems very delicate, and poses a difficult challenge to the possible uses of these nanoribbons as basis for spintronic devices.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics. Zigzag graphene nanoribbons (ZGNRs), quasi one-dimensional semiconductin
Carbon-based magnetic structures promise significantly longer coherence times than traditional magnetic materials, which is of fundamental importance for spintronic applications. An elegant way of achieving carbon-based magnetic moments is the design
We investigate electron and phonon transport through edge disordered zigzag graphene nanoribbons based on the same methodological tool of nonequilibrium Green functions. We show that edge disorder dramatically reduces phonon thermal transport while b
It is shown that apart from well-known factors, like temperature, substrate, and edge reconstruction effects, also the presence of external contacts is destructive for the formation of magnetic moments at the edges of graphene nanoribbons. The edge m
In this article, we report band structure studies of zigzag graphene nanoribbons (ZGNRs) on introducing defects (sp_3 hybridized carbon atoms) in different concentrations at edges by varying the ratio of sp_3 to sp_2 hybridized carbon atoms. On the b