ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of Kondo-assisted co-tunneling in a spin-1 quantum dot with Spin-Orbit interaction

135   0   0.0 ( 0 )
 نشر من قبل Procolo Lucignano Dr.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Kondo-type zero-bias anomalies have been frequently observed in quantum dots occupied by two electrons and attributed to a spin-triplet configuration that may become stable under particular circumstances. Conversely, zero-bias anomalies have been so far quite elusive when quantum dots are occupied by an even number of electrons greater than two, even though a spin-triplet configuration is more likely to be stabilized there than for two electrons. We propose as an origin of this phenomenon the spin-orbit interaction, and we show how it profoundly alters the conventional Kondo screening scenario in the simple case of a laterally confined quantum dot with four electrons.



قيم البحث

اقرأ أيضاً

The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin--orbit coefficents. On the other hand they make it possible to turn on and off the effect of SOI with a high on/off-ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin--orbit magnetic field. Spin-lifetimes of 10 s are achieved at a tunnel rate close to 1 kHz.
We propose that two-channel orbital Kondo ``spin 1/2 conductance can be measured in a quantum dot at Coulomb Blockade with an odd number of electrons with contacts in a pillar configuration, if an orthogonal magnetic field induces an appropriate leve l crossing. At the zero-temperature strong coupling fixed point the conductance reaches the unitarity limit with a non-Fermi liquid sqrt(T)-law.
The Kondo effect is a key many-body phenomenon in condensed matter physics. It concerns the interaction between a localised spin and free electrons. Discovered in metals containing small amounts of magnetic impurities, it is now a fundamental mechani sm in a wide class of correlated electron systems. Control over single, localised spins has become relevant also in fabricated structures due to the rapid developments in nano-electronics. Experiments have already demonstrated artificial realisations of isolated magnetic impurities at metallic surfaces, nanometer-scale magnets, controlled transitions between two-electron singlet and triplet states, and a tunable Kondo effect in semiconductor quantum dots. Here, we report an unexpected Kondo effect realised in a few-electron quantum dot containing singlet and triplet spin states whose energy difference can be tuned with a magnetic field. This effect occurs for an even number of electrons at the degeneracy between singlet and triplet states. The characteristic energy scale is found to be much larger than for the ordinary spin-1/2 case.
154 - Huan Wang , Ka-Di Zhu 2008
Berry phase in a single quantum dot with Rashba spin-orbit coupling is investigated theoretically. Berry phases as functions of magnetic field strength, dot size, spin-orbit coupling and photon-spin coupling constants are evaluated. It is shown that the Berry phase will alter dramatically from 0 to $2pi$ as the magnetic field strength increases. The threshold of magnetic field depends on the dot size and the spin-orbit coupling constant.
We report the observation of Kondo physics in a spin- 3/2 hole quantum dot. The dot is formed close to pinch-off in a hole quantum wire defined in an undoped AlGaAs/GaAs heterostructure. We clearly observe two distinctive hallmarks of quantum dot Kon do physics. First, the Zeeman spin-splitting of the zero-bias peak in the differential conductance is independent of gate voltage. Second, this splitting is twice as large as the splitting for the lowest one-dimensional subband. We show that the Zeeman splitting of the zero-bias peak is highly-anisotropic, and attribute this to the strong spin-orbit interaction for holes in GaAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا