ﻻ يوجد ملخص باللغة العربية
We construct the spectrum generating algebra (SGA) for a free particle in the three dimensional sphere $S^3$ for both, classical and quantum descriptions. In the classical approach, the SGA supplies time-dependent constants of motion that allow to solve algebraically the motion. In the quantum case, the SGA include the ladder operators that give the eigenstates of the free Hamiltonian. We study this quantum case from two equivalent points of view.
In this paper, we construct a Spectrum Generating Algebra (SGA) for a quantum system with purely continuous spectrum: the quantum free particle in a Lobachevski space with constant negative curvature. The SGA contains the geometrical symmetry algebra
When discussing consequences of symmetries of dynamical systems based on Noethers first theorem, most standard textbooks on classical or quantum mechanics present a conclusion stating that a global continuous Lie symmetry implies the existence of a t
The formalism of SUSYQM (SUperSYmmetric Quantum Mechanics) is properly modified in such a way to be suitable for the description and the solution of a classical maximally superintegrable Hamiltonian System, the so-called Taub-Nut system, associated w
A new 3-ary non-associative algebra, which is called a semi-associative $3$-algebra, is introduced, and the double modules and double extensions by cocycles are provided. Every semi-associative $3$-algebra $(A, { , , })$ has an adjacent 3-Lie algebra
S-expansions of three-dimensional real Lie algebras are considered. It is shown that the expansion operation allows one to obtain a non-unimodular Lie algebra from a unimodular one. Nevertheless S-expansions define no ordering on the variety of Lie algebras of a fixed dimension.