ترغب بنشر مسار تعليمي؟ اضغط هنا

Feedback under the microscope: thermodynamic structure and AGN driven shocks in M87

236   0   0.0 ( 0 )
 نشر من قبل Evan Million
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) Using a deep Chandra exposure (574 ks), we present high-resolution thermodynamic maps created from the spectra of $sim$16,000 independent regions, each with $sim$1,000 net counts. The excellent spatial resolution of the thermodynamic maps reveals the dramatic and complex temperature, pressure, entropy and metallicity structure of the system. Excluding the X-ray arms, the diffuse cluster gas at a given radius is strikingly isothermal. This suggests either that the ambient cluster gas, beyond the arms, remains relatively undisturbed by AGN uplift, or that conduction in the intracluster medium (ICM) is efficient along azimuthal directions. We confirm the presence of a thick ($sim$40 arcsec or $sim$3 kpc) ring of high pressure gas at a radius of $sim$180 arcsec ($sim$14 kpc) from the central AGN. We verify that this feature is associated with a classical shock front, with an average Mach number M = 1.25. Another, younger shock-like feature is observed at a radius of $sim$40 arcsec ($sim$3 kpc) surrounding the central AGN, with an estimated Mach number M > 1.2. As shown previously, if repeated shocks occur every $sim$10 Myrs, as suggested by these observations, then AGN driven weak shocks could produce enough energy to offset radiative cooling of the ICM. A high significance enhancement of Fe abundance is observed at radii 350 - 400 arcsec (27 - 31 kpc). This ridge is likely formed in the wake of the rising bubbles filled with radio-emitting plasma that drag cool, metal-rich gas out of the central galaxy. We estimate that at least $sim1.0times10^6$ solar masses of Fe has been lifted and deposited at a radius of 350-400 arcsec; approximately the same mass of Fe is measured in the X-ray bright arms, suggesting that a single generation of buoyant radio bubbles may be responsible for the observed Fe excess at 350 - 400 arcsec.



قيم البحث

اقرأ أيضاً

329 - D. Wittor , M. Gaspari 2020
Turbulence in the intracluster, intragroup, and circumgalactic medium plays a crucial role in the self-regulated feeding and feedback loop of central supermassive black holes. We dissect the three-dimensional turbulent `weather in a high-resolution E ulerian simulation of active galactic nucleus (AGN) feedback, shown to be consistent with multiple multi-wavelength observables of massive galaxies. We carry out post-processing simulations of Lagrangian tracers to track the evolution of enstrophy, a proxy of turbulence, and its related sinks and sources. This allows us to isolate in depth the physical processes that determine the evolution of turbulence during the recurring strong and weak AGN feedback events, which repeat self-similarly over the Gyr evolution. We find that the evolution of enstrophy/turbulence in the gaseous halo is highly dynamic and variable over small temporal and spatial scales, similar to the chaotic weather processes on Earth. We observe major correlations between the enstrophy amplification and recurrent AGN activity, especially via its kinetic power. While advective and baroclinc motions are always sub-dominant, stretching motions are the key sources of the amplification of enstrophy, in particular along the jet/cocoon, while rarefactions decrease it throughout the bulk of the volume. This natural self-regulation is able to preserve, as ensemble, the typically-observed subsonic turbulence during cosmic time, superposed by recurrent spikes via impulsive anisotropic AGN features (wide outflows, bubbles, cocoon shocks). This study facilitates the preparation and interpretation of the thermo-kinematical observations enabled by new revolutionary X-ray IFU telescopes, such as XRISM and Athena.
We present an analysis of the 2-10 keV X-ray emission associated with the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). Our sample consists of 32 BCGs that lie in highly X-ray luminous cluster of galaxies (L_X-ray (0.1-2.4 keV) > 3*10^44 erg/s) in which AGN-jetted outflows are creating and sustaining clear Xray cavities. Our sample covers the redshift range 0 < z < 0.6 and reveals strong evolution in the nuclear X-ray luminosities, such that the black holes in these systems have become on average at least 10 times fainter over the last 5 Gyrs. Mindful of potential selection effects, we propose two possible scenarios to explain our results: 1) either that the AGNs in BCGs with X-ray cavities are steadily becoming fainter, or more likely, 2) that the fraction of these BCGs with radiatively efficient nuclei is decreasing with time from roughly 60 per cent at z=0.6 to 30 per cent at z=0.1. Based on this strong evolution, we predict that a significant fraction of BCGs in z=1 clusters may host quasars at their centres, potentially complicating the search for such clusters at high redshift. In analogy with black-hole binaries and based on the observed Eddington ratios of our sources, we further propose that the evolving AGN population in BCGs with X-ray cavities may be transiting from a canonical low/hard state, analogous to that of X-ray binaries, to a quiescent state over the last 5 Gyrs.
The ISM evolution of elliptical galaxies experiencing feedback from accretion onto a central black hole was studied recently with high-resolution 1D hydrodynamical simulations including radiative heating and pressure effects, a RIAF-like radiative ef ficiency, mechanical input from AGN winds, and accretion-driven starbursts. Here we focus on the observational properties of the models in the X-ray band (nuclear luminosity; hot ISM luminosity and temperature; temperature and brightness profiles during quiescence and during outbursts). The nuclear bursts last for ~10^7 yr, with a duty-cycle of a few X (10^-3-10^-2); the present epoch bolometric nuclear emission is very sub-Eddington. The ISM thermal luminosity lx oscillates in phase with the nuclear one; this helps reproduce statistically the observed large lx variation. In quiescence the temperature profile has a negative gradient; thanks to past outbursts, the brightness profile lacks the steep shape typical of inflowing models. Outbursts produce disturbances in these profiles. Most significantly, a hot bubble from shocked hot gas is inflated at the galaxy center; the bubble would be conical in shape, and show radio emission. The ISM resumes a smooth appearance on a time-scale of ~200 Myr; the duty-cycle of perturbances in the ISM is of the order of 5-10%. From the present analysis, additional input physics is important in the ISM-black hole coevolution, to fully account for the properties of real galaxies, as a confining external medium and a jet. The jet will reduce further the mass available for accretion (and then the Eddington ratio $l$), and may help, together with an external pressure, to produce flat or positive temperature gradient profiles (observed in high density environments). Alternatively, $l$ can be reduced if the switch from high to low radiative efficiency takes place at a larger $l$ than routinely assumed.
We present results from new Chandra, GMRT, and SOAR observations of NGC 5813, the dominant central galaxy in a nearby galaxy group. The system shows three pairs of collinear cavities at 1 kpc, 8 kpc, and 20 kpc from the central source, from three dis tinct outbursts of the central AGN, which occurred 3x10^6, 2x10^7, and 9x10^7 yr ago. The H-alpha and X-ray observations reveal filaments of cool gas that has been uplifted by the X-ray cavities. The inner two cavity pairs are filled with radio emitting plasma, and each pair is associated with an elliptical surface brightness edge, which we unambiguously identify as shocks (with measured temperature jumps) with Mach numbers of M~1.7 and M~1.5 for the inner and outer shocks, respectively. Such clear signatures from three distinct AGN outbursts in an otherwise dynamically relaxed system provide a unique opportunity to study AGN feedback and outburst history. The mean power of the two most recent outbursts differs by a factor of six, from 1.5--10x10^42 erg/s, indicating that the mean jet power changes significantly over long (~10^7 yr) timescales. The total energy output of the most recent outburst is also more than an order of magnitude less than the total energy of the previous outburst (1.5x10^56 erg versus 4x10^57 erg), which may be a result of the lower mean power, or may indicate that the most recent outburst is ongoing. The outburst interval implied by both the shock and cavity ages (~10^7 yr) indicates that, in this system, shock heating alone is sufficient to balance radiative cooling close to the central AGN, which is the relevant region for regulating feedback between the ICM and the central SMBH.
Radiative cooling may plausibly cause hot gas in the centre of a massive galaxy, or galaxy cluster, to become gravitationally unstable. The subsequent collapse of this gas on a dynamical timescale can provide an abundant source of fuel for AGN heatin g and star formation. Thus, this mechanism provides a way to link the AGN accretion rate to the global properties of an ambient cooling flow, but without the implicit assumption that the accreted material must have flowed onto the black hole from 10s of kiloparsecs away. It is shown that a fuelling mechanism of this sort naturally leads to a close balance between AGN heating and the radiative cooling rate of the hot, X-ray emitting halo. Furthermore, AGN powered by cooling-induced gravitational instability would exhibit characteristic duty cycles (delta) which are redolent of recent observational findings: delta is proportional to L_X/sigma_{*}^{3}, where L_X is the X-ray luminosity of the hot atmosphere, and sigma_{*} is the central stellar velocity dispersion of the host galaxy. Combining this result with well-known scaling relations, we deduce a duty cycle for radio AGN in elliptical galaxies that is approximately proportional to M_{BH}^{1.5}, where M_{BH} is the central black hole mass. Outburst durations and Eddington ratios are also given. Based on the results of this study, we conclude that gravitational instability could provide an important mechanism for supplying fuel to AGN in massive galaxies and clusters, and warrants further investigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا