ﻻ يوجد ملخص باللغة العربية
(abridged) Using a deep Chandra exposure (574 ks), we present high-resolution thermodynamic maps created from the spectra of $sim$16,000 independent regions, each with $sim$1,000 net counts. The excellent spatial resolution of the thermodynamic maps reveals the dramatic and complex temperature, pressure, entropy and metallicity structure of the system. Excluding the X-ray arms, the diffuse cluster gas at a given radius is strikingly isothermal. This suggests either that the ambient cluster gas, beyond the arms, remains relatively undisturbed by AGN uplift, or that conduction in the intracluster medium (ICM) is efficient along azimuthal directions. We confirm the presence of a thick ($sim$40 arcsec or $sim$3 kpc) ring of high pressure gas at a radius of $sim$180 arcsec ($sim$14 kpc) from the central AGN. We verify that this feature is associated with a classical shock front, with an average Mach number M = 1.25. Another, younger shock-like feature is observed at a radius of $sim$40 arcsec ($sim$3 kpc) surrounding the central AGN, with an estimated Mach number M > 1.2. As shown previously, if repeated shocks occur every $sim$10 Myrs, as suggested by these observations, then AGN driven weak shocks could produce enough energy to offset radiative cooling of the ICM. A high significance enhancement of Fe abundance is observed at radii 350 - 400 arcsec (27 - 31 kpc). This ridge is likely formed in the wake of the rising bubbles filled with radio-emitting plasma that drag cool, metal-rich gas out of the central galaxy. We estimate that at least $sim1.0times10^6$ solar masses of Fe has been lifted and deposited at a radius of 350-400 arcsec; approximately the same mass of Fe is measured in the X-ray bright arms, suggesting that a single generation of buoyant radio bubbles may be responsible for the observed Fe excess at 350 - 400 arcsec.
Turbulence in the intracluster, intragroup, and circumgalactic medium plays a crucial role in the self-regulated feeding and feedback loop of central supermassive black holes. We dissect the three-dimensional turbulent `weather in a high-resolution E
We present an analysis of the 2-10 keV X-ray emission associated with the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). Our sample consists of 32 BCGs that lie in highly X-ray luminous cluster of galaxies (L_X-ray (0.1-2.4 keV)
The ISM evolution of elliptical galaxies experiencing feedback from accretion onto a central black hole was studied recently with high-resolution 1D hydrodynamical simulations including radiative heating and pressure effects, a RIAF-like radiative ef
We present results from new Chandra, GMRT, and SOAR observations of NGC 5813, the dominant central galaxy in a nearby galaxy group. The system shows three pairs of collinear cavities at 1 kpc, 8 kpc, and 20 kpc from the central source, from three dis
Radiative cooling may plausibly cause hot gas in the centre of a massive galaxy, or galaxy cluster, to become gravitationally unstable. The subsequent collapse of this gas on a dynamical timescale can provide an abundant source of fuel for AGN heatin