ترغب بنشر مسار تعليمي؟ اضغط هنا

Shocks and Cavities from Multiple Outbursts in the Galaxy Group NGC 5813: A Window to AGN Feedback

228   0   0.0 ( 0 )
 نشر من قبل Scott Randall
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from new Chandra, GMRT, and SOAR observations of NGC 5813, the dominant central galaxy in a nearby galaxy group. The system shows three pairs of collinear cavities at 1 kpc, 8 kpc, and 20 kpc from the central source, from three distinct outbursts of the central AGN, which occurred 3x10^6, 2x10^7, and 9x10^7 yr ago. The H-alpha and X-ray observations reveal filaments of cool gas that has been uplifted by the X-ray cavities. The inner two cavity pairs are filled with radio emitting plasma, and each pair is associated with an elliptical surface brightness edge, which we unambiguously identify as shocks (with measured temperature jumps) with Mach numbers of M~1.7 and M~1.5 for the inner and outer shocks, respectively. Such clear signatures from three distinct AGN outbursts in an otherwise dynamically relaxed system provide a unique opportunity to study AGN feedback and outburst history. The mean power of the two most recent outbursts differs by a factor of six, from 1.5--10x10^42 erg/s, indicating that the mean jet power changes significantly over long (~10^7 yr) timescales. The total energy output of the most recent outburst is also more than an order of magnitude less than the total energy of the previous outburst (1.5x10^56 erg versus 4x10^57 erg), which may be a result of the lower mean power, or may indicate that the most recent outburst is ongoing. The outburst interval implied by both the shock and cavity ages (~10^7 yr) indicates that, in this system, shock heating alone is sufficient to balance radiative cooling close to the central AGN, which is the relevant region for regulating feedback between the ICM and the central SMBH.



قيم البحث

اقرأ أيضاً

Low mass galaxy cluster systems and groups play an essential role in upcoming cosmological studies such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to qu antify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC741, which provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly-bent jets, a 100kpc radio trail, intriguing narrow X-ray filaments, and gas sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas stripping from NGC742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.
We present deep Chandra, XMM-Newton, Giant Metrewave Radio Telescope and Halpha observations of the group-group merger NGC 6338. X-ray imaging and spectral mapping show that as well as trailing tails of cool, enriched gas, the two cool cores are embe dded in an extensive region of shock heated gas with temperatures rising to ~5 keV. The velocity distribution of the member galaxies show that the merger is occurring primarily along the line of sight, and we estimate that the collision has produced shocks of Mach number M=2.3 or greater, making this one of the most violent mergers yet observed between galaxy groups. Both cool cores host potential AGN cavities and Halpha nebulae, indicating rapid radiative cooling. In the southern cool core around NGC 6338, we find that the X-ray filaments associated with the Halpha nebula have low entropies (<10 kev cm^2) and short cooling times (~200-300 Myr). In the northern core we identify an Halpha cloud associated with a bar of dense, cool X-ray gas offset from the dominant galaxy. We find no evidence of current jet activity in either core. We estimate the total mass of the system and find that the product of this group-group merger will likely be a galaxy cluster.
102 - A. Baldi 2009
We present Chandra ACIS-I and ACIS-S observations ($sim$200 ks in total) of the X-ray luminous elliptical galaxy NGC 4636, located in the outskirts of the Virgo cluster. A soft band (0.5-2 keV) image shows the presence of a bright core in the center surrounded by an extended X-ray corona and two pronounced quasi-symmetric, 8 kpc long, arm-like features. Each of this features defines the rimof an ellipsoidal bubble. An additional bubble-like feature, whose northern rim is located $sim2$ kpc south of the north-eastern arm, is detected as well. We present surface brightness and temperature profiles across the rims of the bubbles, showing that their edges are sharp and characterized by temperature jumps of about 20-25%. Through a comparison of the observed profiles with theoretical shock models, we demonstrate that a scenario where the bubbles were produced by shocks, probably driven by energy deposited off-center by jets, is the most viable explanation to the X-ray morphology observed in the central part of NGC 4636.
We report on the results of an analysis of Chandra, XMM-Newton and new GMRT data of the X-ray bright compact group of galaxies HCG 62, which is one of the few groups known to possess clear, small X-ray cavities in the inner regions. This is part of a n ongoing X-ray/low-frequency radio study of 18 groups, initially chosen for the availability of good-quality X-ray data and evidence for AGN/hot gas interaction. At higher frequency (1.4 GHz), the HCG 62 cavity system shows minimal if any radio emission, but the new GMRT observations at 235 MHz and 610 MHz clearly detect extended low-frequency emission from radio lobes corresponding to the cavities. By means of the synergy of X-ray and low-frequency radio observations, we compare and discuss the morphology, luminosity and pressure of the gas and of the radio source. We find that the radio source is radiatively inefficient, with a ratio of radio luminosity to mechanical cavity power of $sim 10^{-4}$, and that the radio pressure of the lobes is about one order of magnitude lower than the X-ray pressure of the surrounding thermal gas. Thanks to the high spatial resolution of the Chandra surface brightness and temperature profiles, we also identify a shock front located at 36 kpc to the south-west of the group center, close to the southern radio lobe, with a Mach number $sim 1.5$ and a total power which is about one order of magnitude higher than the cavity power. Such a shock may have heated the gas in the southern region, as indicated by the temperature map. The shock may also explain the arc-like region of enriched gas seen in the iron abundance map, as this may be produced by a non-Maxwellian electron distribution near its front.
We examine the core of the X-ray bright galaxy cluster 2A 0335+096 using deep Chandra X-ray imaging and spatially-resolved spectroscopy, and include new radio observations. The set of around eight X-ray bright blobs in the core of the cluster, appear ing like eggs in a birds nest, contains multiphase gas from ~0.5 to 2 keV. The morphology of the coolest X-ray emitting gas at 0.5 keV temperature is similar to the Halpha emitting nebula known in this cluster, which surrounds the central galaxy. XMM-Newton grating spectra confirm the presence of material at these temperatures, showing excellent agreement with Chandra emission measures. On scales of 80 to 250 kpc there is a low temperature, high metallicity, swirl of intracluster medium as seen in other clusters. In the core we find evidence for a further three X-ray cavities, in addition to the two previously discovered. Enhancements in 1.5 GHz radio emission are correlated with the X-ray cavities. The total 4PV enthalpy associated with the cavities is around 5x10^59 erg. This energy would be enough to heat the cooling region for ~5x10^7 yr. We find a maximum pressure discontinuity of 26 per cent (2 sigma) across the surface brightness edge to the south-west of the cluster core. This corresponds to an upper limit on the Mach number of the cool core with respect to its surroundings of 0.55.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا