ﻻ يوجد ملخص باللغة العربية
In a recent article (P.Wochner et al., PNAS (2009)) x-ray scattering intensity correlations around a ring, in the speckle diffraction pattern of a colloidal glass, were shown to display a remarkable ~ cos(n $phi$) dependence on the angular coordinate $phi$ around the ring, with integer index n depending on the magnitude of the scattering wavevector. With an analytical derivation that preserves full generality in the Fraunhofer diffraction limit, we clarify the relationship of this result to previous x-ray studies of bond-orientation order, and provide a sound basis to the statement that the angular intensity correlations deliver information on local bond arrangements in a disordered (or partially ordered) system. We present a detailed analysis of the angular cross-correlation function and show its applicability for studies of wide range of structural properties of disordered systems, from local structure to spatial correlations between distant structural elements.
Angular x-ray cross-correlation analysis (XCCA) is an approach to study the structure of disordered systems using the results of x-ray scattering experiments. In this paper we summarize recent theoretical developments related to the Fourier analysis
Angular x-ray cross-correlation analysis (XCCA) is an approach to study the structure of disordered systems using the results of coherent x-ray scattering experiments. Here, we present the results of simulations that validate our theoretical findings
We study a recently introduced and exactly solvable mean-field model for the density of vibrational states $mathcal{D}(omega)$ of a structurally disordered system. The model is formulated as a collection of disordered anharmonic oscillators, with ran
Landaus theory of phase transitions is adapted to treat independently relaxing regions in complex systems using nanothermodynamics. The order parameter we use governs the thermal fluctuations, not a specific static structure. We find that the entropy
Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving the electronic structure of disordered systems. We use free probability to approximate the ensemble- averaged density of states without exact diagonaliza