ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray cross-correlation analysis and local symmetries of disordered systems. I. General theory

70   0   0.0 ( 0 )
 نشر من قبل Ivan Vartaniants
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent article (P.Wochner et al., PNAS (2009)) x-ray scattering intensity correlations around a ring, in the speckle diffraction pattern of a colloidal glass, were shown to display a remarkable ~ cos(n $phi$) dependence on the angular coordinate $phi$ around the ring, with integer index n depending on the magnitude of the scattering wavevector. With an analytical derivation that preserves full generality in the Fraunhofer diffraction limit, we clarify the relationship of this result to previous x-ray studies of bond-orientation order, and provide a sound basis to the statement that the angular intensity correlations deliver information on local bond arrangements in a disordered (or partially ordered) system. We present a detailed analysis of the angular cross-correlation function and show its applicability for studies of wide range of structural properties of disordered systems, from local structure to spatial correlations between distant structural elements.

قيم البحث

اقرأ أيضاً

326 - R.P. Kurta , M. Altarelli , 2013
Angular x-ray cross-correlation analysis (XCCA) is an approach to study the structure of disordered systems using the results of x-ray scattering experiments. In this paper we summarize recent theoretical developments related to the Fourier analysis of the cross-correlation functions. Results of our simulations demonstrate the application of XCCA to two- and three-dimensional (2D and 3D) disordered systems of particles. We show that the structure of a single particle can be recovered using x-ray data collected from a 2D disordered system of identical particles. We also demonstrate that valuable structural information about the local structure of 3D systems, inaccessible from a standard small-angle x-ray scattering experiment, can be resolved using XCCA.
Angular x-ray cross-correlation analysis (XCCA) is an approach to study the structure of disordered systems using the results of coherent x-ray scattering experiments. Here, we present the results of simulations that validate our theoretical findings for XCCA obtained in a previous paper [M. Altarelli et al., Phys. Rev. B 82, 104207 (2010)]. We consider as a model two-dimensional (2D) disordered systems composed of non-interacting colloidal clusters with fivefold symmetry and with orientational and positional disorder. We simulate a coherent x-ray scattering in the far field from such disordered systems and perform the angular cross-correlation analysis of calculated diffraction data. The results of our simulations show the relation between the Fourier series representation of the cross-correlation functions (CCFs) and different types of correlations in disordered systems. The dependence of structural information extracted by XCCA on the density of disordered systems and the degree of orientational disorder of clusters is investigated. The statistical nature of the fluctuations of the CCFs in the model `single-shot experiments is demonstrated and the potential of extracting structural information from the analysis of CCFs averaged over a set of diffraction patterns is discussed. We also demonstrate the effect of partial coherence of x-rays on the results of XCCA.
We study a recently introduced and exactly solvable mean-field model for the density of vibrational states $mathcal{D}(omega)$ of a structurally disordered system. The model is formulated as a collection of disordered anharmonic oscillators, with ran dom stiffness $kappa$ drawn from a distribution $p(kappa)$, subjected to a constant field $h$ and interacting bilinearly with a coupling of strength $J$. We investigate the vibrational properties of its ground state at zero temperature. When $p(kappa)$ is gapped, the emergent $mathcal{D}(omega)$ is also gapped, for small $J$. Upon increasing $J$, the gap vanishes on a critical line in the $(h,J)$ phase diagram, whereupon replica symmetry is broken. At small $h$, the form of this pseudogap is quadratic, $mathcal{D}(omega)simomega^2$, and its modes are delocalized, as expected from previously investigated mean-field spin glass models. However, we determine that for large enough $h$, a quartic pseudogap $mathcal{D}(omega)simomega^4$, populated by localized modes, emerges, the two regimes being separated by a special point on the critical line. We thus uncover that mean-field disordered systems can generically display both a quadratic-delocalized and a quartic-localized spectrum at the glass transition.
Landaus theory of phase transitions is adapted to treat independently relaxing regions in complex systems using nanothermodynamics. The order parameter we use governs the thermal fluctuations, not a specific static structure. We find that the entropy term dominates the thermal behavior, as is reasonable for disordered systems. Consequently, the thermal equilibrium occurs at the internal-energy maximum, so that the minima in a potential-energy landscape have negligible influence on the dynamics. Instead the dynamics involves normal thermal fluctuations about the free-energy minimum, with a time scale that is governed by the internal-energy maximum. The temperature dependence of the fluctuations yields VTF-like relaxation rates and approximate time-temperature superposition, consistent with the WLF procedure for analyzing the dynamics of complex fluids; while the size dependence of the fluctuations provides an explanation for the distribution of relaxation times and heterogeneity that are found in glass-forming liquids, thus providing a unified picture for several features in the dynamics of disordered materials.
70 - Jiahao Chen 2012
Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving the electronic structure of disordered systems. We use free probability to approximate the ensemble- averaged density of states without exact diagonaliza tion. We present an error analysis that quantifies the accuracy using a generalized moment expansion, allowing us to distinguish between different approximations. We identify an approximation that is accurate to the eighth moment across all noise strengths, and contrast this with the perturbation theory and isotropic entanglement theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا