ترغب بنشر مسار تعليمي؟ اضغط هنا

Equations of Two-Fluid Hydrodynamics of Superfluid Helium with the Account of Electric Fields

110   0   0.0 ( 0 )
 نشر من قبل Valery Khodusov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

System of two-fluid hydrodynamics of superfluid helium with the account of electric field is obtained. These equations are obtained in kinetic approach using quasi-equilibrium distribution function of quasi-particles, which vanishs collision integral of quasi-particles, and contains dependence on electric field by means of phenomenological parameter {alpha}. Using experimental data at temperature range of 1,4 - 2 K, where basic role plays roton hydrodynamics, the value of phenomenological parameter, is obtained.



قيم البحث

اقرأ أيضاً

We develop a variational approach to calculate the density response function at finite temperatures of the lowest-lying two-fluid modes in a trapped two-component Fermi superfluid close to a Feshbach resonance. The out-of-phase oscillations, which ar e the analogue in trapped gases of second sound in uniform superfluids, have so far not been observed in cold-atom experiments. At unitarity, we show that these modes are observable at finite temperatures via two-photon Bragg scattering, whose spectrum is related to the imaginary part of density response function. This provides direct evidence for superfluidity and a promising way to test microscopic results for thermodynamics at unitarity.
Sound propagation in superfluid $^3$He in aerogel is studied on the basis of a two-fluid model taking into account the effect by the drag force due to collisions between $^3$He-quasiparticles and aerogel molecules. The drag force plays a role of fric tional force between the aerogel and the normal-fluid component. In local equilibrium, they move together in accordance with McKenna {it et al.}s model. The deviation from the local equilibrium leads to the damping of sound. We give explicit expressions for the attenuation of longitudinal sounds in this system. We also discuss the sound propagation in a superfluid ${}^3$He-aerogel system embedded in a narrow pore. It is shown that the forth sound propagates in such a system because of the clamping of the normal fluid by the aerogel.
We present an experimental and theoretical study of the 2D dynamics of electrically charged nanoparticles trapped under a free surface of superfluid helium in a static vertical electric field. We focus on the dynamics of particles driven by the inter action with quantized vortices terminating at the free surface. We identify two types of particle trajectories and the associated vortex structures: vertical linear vortices pinned at the bottom of the container and half-ring vortices travelling along the free surface of the liquid.
The $A$ phase and the $B$ phase of superfluid He-3 are well studied, both theoretically and experimentally. The decay time scale of the $A$ phase to the $B$ phase of a typical supercooled superfluid $^3$He-A sample is calculated to be $10^{20,000}$ y ears or longer, yet the actual first-order phase transition of supercooled $A$ phase happens very rapidly (in seconds to minutes) in the laboratory. We propose that this very fast phase transition puzzle can be explained by the resonant tunneling effect in field theory, which generically happens since the degeneracies of both the $A$ and the $B$ phases are lifted by many small interaction effects. This explanation predicts the existence of peaks in the $A to B$ transition rate for certain values of the temperature, pressure, and magnetic field. Away from these peaks, the transition simply will not happen.
119 - I-Sheng Yang , S.-H. Henry Tye , 2011
We argue that classical transitions can be the key to explaining the long standing puzzle of the fast A-B phase transition observed in superfluid Helium 3 while standard theory expects it to be unobservably slow. Collisions between domain walls are s hown to be capable of reaching phases inaccessible through homogenous nucleation on the measured timescales. We demonstrate qualitative agreements with prior observations and provide a definite, distinctive prediction that could be verified through future experiments or, perhaps, a specific analysis of existing data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا