ﻻ يوجد ملخص باللغة العربية
The $A$ phase and the $B$ phase of superfluid He-3 are well studied, both theoretically and experimentally. The decay time scale of the $A$ phase to the $B$ phase of a typical supercooled superfluid $^3$He-A sample is calculated to be $10^{20,000}$ years or longer, yet the actual first-order phase transition of supercooled $A$ phase happens very rapidly (in seconds to minutes) in the laboratory. We propose that this very fast phase transition puzzle can be explained by the resonant tunneling effect in field theory, which generically happens since the degeneracies of both the $A$ and the $B$ phases are lifted by many small interaction effects. This explanation predicts the existence of peaks in the $A to B$ transition rate for certain values of the temperature, pressure, and magnetic field. Away from these peaks, the transition simply will not happen.
We argue that classical transitions can be the key to explaining the long standing puzzle of the fast A-B phase transition observed in superfluid Helium 3 while standard theory expects it to be unobservably slow. Collisions between domain walls are s
The irrotational nature of superfluid helium was discovered through its decoupling from the container under rotation. Similarly, the resonant period drop of a torsional oscillator (TO) containing solid helium was first interpreted as the decoupling o
We report the results of high frequency acoustic shear impedance measurement on superfluid helium-3 confined in 98% porosity silica aerogel. Using 8.69 MHz continuous wave excitation, we measured the acoustic shear impedance as a function of temperat
An equilibrium multielectron bubble in liquid helium is a fascinating object with a spherical two-dimensional electron gas on its surface. We describe two ways of creating them. MEBs have been observed in the dome of a cylindrical cell with an unexpe
Tungsten filaments used as sources of electrons in a low temperature liquid or gaseous helium environment have remarkable properties of operating at thousands of degrees Kelvin in surroundings at temperatures of order 1 K. We provide an explanation o