ﻻ يوجد ملخص باللغة العربية
Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H shell burning. In particular, the strengths of low-energy resonances with E < 200 keV in 25Mg(p,gamma)26Al determine the production of 26Al and a precise knowledge of these nuclear data is highly desirable. Absolute measurements at such low-energies are often very difficult and hampered by gamma-ray background as well as changing target stoichiometry during the measurements. The latter problem can be partly avoided using higher energy resonances of the same reaction as a normalization reference. Hence the parameters of suitable resonances have to be studied with adequate precision. In the present work we report on new measurements of the resonance strengths omega_gamma of the E = 214, 304, and 326 keV resonances in the reactions 24Mg(p,gamma)25Al, 25Mg(p,gamma)26Al, and 26Mg(p,gamma)27Al, respectively. These studies were performed at the LUNA facility in the Gran Sasso underground laboratory using multiple experimental techniques and provided results with a higher accuracy than previously achieved.
The $^{22}$Ne(p,$gamma$)$^{23}$Na reaction is the most uncertain process in the neon-sodium cycle of hydrogen burning. At temperatures relevant for nucleosynthesis in asymptotic giant branch stars and classical novae, its uncertainty is mainly due to
A systematic study of the radiative proton capture reaction for all stable nickel isotopes is presented. The results were obtained using 2.0 - 6.0 MeV protons from the 11 MV tandem Van de Graaff accelerator at the University of Notre Dame. The gamma-
Exclusive measurements of the p p -> p p pi+ pi- reaction have been carried out at Tp = 775 MeV at CELSIUS using the PROMICE/WASA setup. Together with data obtained at lower energy they point to a dominance of the Roper excitation in this process. Fr
We have measured the cross section of the 7Be(p,gamma)8B reaction for E_cm = 185.8 keV, 134.7 keV and 111.7 keV using a radioactive 7Be target (132 mCi). Single and coincidence spectra of beta^+ and alpha particles from 8B and 8Be^* decay, respective
A disagreement between two determinations of Gamma_alpha of the astro- physically relevant level at E_x=4.378 MeV in 19F has been stated in two recent papers by Wilmes et al. and de Oliveira et al. In this work the uncertainties of both papers are di