ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Anisotropic Charge on Transverse Optical Phonons in NiO

99   0   0.0 ( 0 )
 نشر من قبل Hiroshi Uchiyama
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phonon dispersion of detwinned NiO is measured using inelastic x-ray scattering. It is found that, near the zone center, the energy of the transverse optical phonon mode polarized parallel to the antiferromagnetic order is ~1 meV lower than that of the mode polarized perpendicular to the order, at room temperature. This is explained via anisotropic polarization of the Ni and O atoms, as confirmed using a Berrys phase approach with first-principles calculations. Our explanation avoids an apparent contradiction in previous discussions focusing on Heisenberg interaction.

قيم البحث

اقرأ أيضاً

We investigate on-site Coulomb interaction energy between two 3p holes U(Ni 3p) of ultrathin NiO films on Ag(001) by both x-ray photoelectron spectroscopy and Auger electron spectroscopy. As the film becomes thin, U(Ni 3p) monotonically decreases, an d the difference of U(Ni 3p) for 1 monolayer (ML) film from that of bulk-like thick film delta U(Ni 3p) reaches ~ -2.2 eV. The observed delta U(Ni 3p) for 1 ML film is well reproduced by the differences of both the image potential and polarization energies between 1 ML film and the bulk-like thick film. Hence, the present results provide an evidence for the picture originally proposed by Duffy et al. [J. Phys. C: Solid State Phys., 16, 4087 (1983)] and Altieri et al. [Phys. Rev. B 59, R2517 (1999)]
We measured the transverse magnetoresistivity of the mixed valence compound $alpha$-YbAlB$_4$. Two configurations were used where current was applied along [110] direction for both and magnetic field was applied along [-110] and $c$-axis. We found th e transverse magnetoresistivity is highly anisotropic. In the weak field below 1 T, it is consistent with stronger $c$-$f$ hybridization in the $ab$ plane which was suggested from the previous zero field resistivity measurements. At the higher field above 3 T, we observed a negative transverse magnetoresistivity for the field applied along the $c$-axis. The temperature dependences of the resistivity measured at several different fields suggest the suppression of the heavy fermion behavior at the characteristic field of $sim 5.5$ T.
The evolution of the electronic structures of strongly correlated insulators with doping has long been a central fundamental question in condensed matter physics; it is also of great practical relevance for applications. We have studied the evolution of NiO under hole {em and} electron doping using high-quality thin film and a wide range of experimental and theoretical methods. The evolution is in both cases very smooth with dopant concentration. The band gap is asymmetric under electron and hole doping, consistent with a charge-transfer insulator picture, and is reduced faster under hole than electron doping. For both electron and hole doping, occupied states are introduced at the top of the valence band. The formation of deep donor levels under electron doping and the inability to pin otherwise empty states near the conduction band edge is indicative that local electron addition and removal energies are dominated by a Mott-like Hubbard $U$-interaction even though the global bandgap is predominantly a charge-transfer type gap.
46 - A. Damascelli 1997
We measured the reflectivity of a single crystal of FeSi from the far-infrared to the visible region (50-20000 wavenumber), varying the temperature between 4 and 300 K. The optical conductivity function was obtained via Kramers-Kronig analysis. We ob served a dirty metal-like behavior at room temperature and the opening of a gap of 70 meV at low temperature. The results of a group theoretical analysis of the lattice vibrational modes are presented and compared to the experimental data. Of the five optical phonons expected for this material only four have been observed in the far-infrared region.
A topological superconductor features at its boundaries and vortices Majorana fermions, which are potentially applicable for topological quantum computations. The scarcity of the known experimentally verified physical systems with topological superco nductivity, time-reversal invariant ones in particular, is giving rise to a strong demand for identifying new candidate materials. In this research, we study a heterostructure consisting of a transition metal oxide two-dimensional electron gas (2DEG) sandwiched by insulators near the paraelectric (PE) / ferroelectric (FE) phase transition. Its relevant characteristics is the combination of the transition metal spin-orbit coupling and the soft odd-parity phonons arising from the ferroelectric fluctuation; it gives rise to the fluctuating Rashba effect, which can mediate the pairing interaction for time-reversal invariant topological superconductivity. As the PE / FE phase transition can be driven by applying strain on the heterostructure, this system provides a tunable electron-phonon coupling. Through the first-principle calculations on the (001) [BaOsO3][BaTiO3]4, we find such electron-phonon coupling to be strong over a wide range of applied tensile bi-axial strain in the monolayer BaOsO3 sandwiched between the (001) BaTiO3, hence qualifying it as a good candidate material. Furthermore, the stability of topological superconductivity in this material is enhanced by its orbital physics that gives rise to the anisotropic dispersion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا