ﻻ يوجد ملخص باللغة العربية
The narrow-line Seyfert 1 galaxy 1H0707-495 has previously been identified as showing time lags between flux variations in the soft- (0.3-1 keV) and medium-energy (1-4 keV) X-ray bands that oscillate between positive and negative values as a function of the frequency of the mode of variation. Here we measure and analyse the lags also between a harder X-ray band (4-7.5 keV) and the soft and medium bands, using existing XMM-Newton data, and demonstrate that the entire spectrum of lags, considering both the full energy range, 0.3-7.5 keV, and the full frequency range, 10^-5 < nu < 10^-2 Hz, are inconsistent with previous claims of arising as reverberation associated with the inner accretion disk. Instead we demonstrate that a simple reverberation model, in which scattering or reflection is present in all X-ray bands, explains the full set of lags without requiring any ad hoc explanation for the time lag sign changes. The range of time delays required to explain the observed lags extends up to about 1800 s in the hard band. The results are consistent with reverberation caused by scattering of X-rays passing through an absorbing medium whose opacity decreases with increasing energy and that partially-covers the source. A high covering factor of absorbing and scattering circumnuclear material is inferred.
We use a 380 ks XMM-Newton high-resolution RGS spectrum to look for narrow spectral features from the nuclear environment of 1H0707-495. We do not find any evidence of a line-of-sight ionized wind (warm absorber). We do, however, detect broad emissio
We present the results of a 500 ksec long XMM-Newton observation and a 120 ksec long quasi-simultaneous Chandra observation of the Narrow Line Seyfert 1 galaxy 1H0707-495 performed in 2010 September. Consistent with earlier results by Fabian et al. (
Reverberation from scattering material around the black hole in active galactic nuclei is expected to produce a characteristic signature in a Fourier analysis of the time delays between directly-viewed continuum emission and the scattered light. Narr
The Narrow-line Seyfert I galaxy, 1H0707-495, has been well observed in the 0.3-10 keV band, revealing a dramatic drop in flux in the iron K alpha band, a strong soft excess, and short timescale reverberation lags associated with these spectral featu
Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and co