ترغب بنشر مسار تعليمي؟ اضغط هنا

A Multiwavelength Study of a Sample of 70 micron Selected Galaxies in the COSMOS Field II: The Role of Mergers in Galaxy Evolution

149   0   0.0 ( 0 )
 نشر من قبل Jeyhan Kartaltepe
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the morphological properties of a large sample of 1503 70 micron selected galaxies in the COSMOS field spanning the redshift range 0.01<z< 3.5 with a median redshift of 0.5 and an infrared luminosity range of 10^8<L_IR<10^14L_sun with a median luminosity of 10^11.4 L_sun. In general these galaxies are massive, with a stellar mass range of 10^10-10^12 M_sun, and luminous, with -25<M_K<-20. We find a strong correlation between the fraction of major mergers and L_IR, with the fraction at the highest luminosity being up to 50%. We also find that the fraction of spirals drops dramatically with L_IR. Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities. The precise fraction of mergers in any given L_IR bin varies by redshift due to sources at z>1 being difficult to classify and subject to the effects of band pass shifting, therefore, these numbers can only be considered lower limits. At z<1, where the morphological classifications are most robust, major mergers clearly dominate the ULIRG population (50-80%) and are important for the LIRG population (25-40%). At z>1 the fraction of major mergers is at least 30-40% for ULIRGs. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. We argue that given the number of major gas-rich mergers observed and the relatively short timescale that they would be observable in the (U)LIRG phase that it is plausible for the observed red sequence of massive ellipticals (<10^12 M_sun) to have been formed entirely by gas-rich major mergers.



قيم البحث

اقرأ أيضاً

We present a large robust sample of 1503 reliable and unconfused 70microm selected sources from the multiwavelength data set of the Cosmic Evolution Survey (COSMOS). Using the Spitzer IRAC and MIPS photometry, we estimate the total infrared luminosit y, L_IR (8--1000 microns), by finding the best fit template from several different template libraries. The long wavelength 70 and 160 micron data allow us to obtain a reliable estimate of L_IR, accurate to within 0.2 and 0.05 dex, respectively. The 70 micron data point enables a significant improvement over the luminosity estimates possible with only a 24 micron detection. The full sample spans a wide range in L_IR, L_IR ~ 10^8-10^14 L_sun, with a median luminosity of 10^11.4 L_sun. We identify a total of 687 luminous, 303 ultraluminous, and 31 hyperluminous infrared galaxies (LIRGs, ULIRGs, and HyLIRGs) over the redshift range 0.01<z<3.5 with a median redshift of 0.5. Presented here are the full spectral energy distributions for each of the sources compiled from the extensive multiwavelength data set from the ultraviolet (UV) to the far-infrared (FIR). Using SED fits we find possible evidence for a subset of cooler ultraluminous objects than observed locally. However, until direct observations at longer wavelengths are obtained, the peak of emission and the dust temperature cannot be well constrained. We use these SEDs, along with the deep radio and X-ray coverage of the field, to identify a large sample of candidate active galactic nuclei (AGN). We find that the fraction of AGN increases strongly with L_IR, as it does in the local universe, and that nearly 70% of ULIRGs and all HyLIRGs likely host a powerful AGN.
Submillimetre galaxies (SMGs) are bright sources at submillimetre wavelengths. Made up of mostly of high-z galaxies, SMGs are amongst the most luminous dusty galaxies in the Universe. Studying their environments and clustering strength is thus import ant to put these galaxies in a cosmological context. We present an environmental study of a sample of 116 SMGs in 96 ALMA observation fields, which were initially discovered with the AzTEC camera on ASTE and identified with high-resolution ALMA imaging within the COSMOS survey field, having either spectroscopic or unambiguous photometric redshift. We analysed their environments making use of the latest release of the COSMOS photometric catalogue, COSMOS2015, a catalogue that contains precise photometric redshifts for more than half a million objects over the 2deg2 COSMOS field. We searched for dense galaxy environments computing the so-called overdensity parameter as a function of distance within a radius of 5 arcmin from the SMG. We validated this approach spectroscopically for those SMGs for which spectroscopic redshift is available. As an additional test, we searched for extended X-ray emission as a proxy for the hot intracluster medium, performing an X-ray stacking analysis in the 0.5-2 keV band with a 32 arcsec aperture and our SMG position using all available XMM-Newton and Chandra X-ray observations of the COSMOS field. We find that 27% (31 out of 116) of the SMGs in our sample are located in a galactic dense environment; a fraction that is similar to previous studies. The spectroscopic redshift is known for 15 of these 31 sources, thus this photometric approach is tested using spectroscopy. We are able to confirm that 7 out of 15 SMGs lie in high-density peaks. However, the search for associated extended X-ray emission via an X-ray stacking analysis leads to a detection that is not statistically significant.
We investigate the evolution of mass-selected early-type field galaxies using a sample of 28 gravitational lenses spanning the redshift range 0 < z < 1. Based on the redshift-dependent intercept of the fundamental plane in the rest frame B band, we m easure an evolution rate of d log (M/L)_B / dz = -0.56 +/- 0.04 (all errors are 1 sigma unless noted) if we directly compare to the local intercept measured from the Coma cluster. Re-fitting the local intercept helps minimize potential systematic errors, and yields an evolution rate of d log (M/L)_B / dz = -0.54 +/- 0.09. An evolution analysis of properly-corrected aperture mass-to-light ratios (defined by the lensed image separations) is closely related to the Faber-Jackson relation. In rest frame B band we find an evolution rate of d log (M/L)_B / dz = -0.41 +/- 0.21, a present-day characteristic magnitude of M_{*0} = -19.70 + 5 log h +/- 0.29 (assuming a characteristic velocity dispersion of sigma_{DM*} = 225 km/s), and a Faber-Jackson slope of gamma_{FJ} = 3.29 +/- 0.58. The measured evolution rates favor old stellar populations (mean formation redshift z_f > 1.8 at 2 sigma confidence for a Salpeter initial mass function and a flat Omega_m =0.3 cosmology) among early-type field galaxies, and argue against significant episodes of star formation at z < 1.
123 - Caitlin M. Casey 2013
We present deep 450um and 850um observations of a large, uniformly covered 394arcmin^2 area in the COSMOS field obtained with the SCUBA-2 instrument on the James Clerk Maxwell Telescope (JCMT). We achieve root-mean-square noise values of 4.13mJy at 4 50um and 0.80mJy at 850um. The differential and cumulative number counts are presented and compared to similar previous works. Individual point sources are identified at >3.6sigma significance, a threshold corresponding to a 3-5% sample contamination rate. We identify 78 sources at 450um and 99 at 850um, with flux densities S450=13-37mJy and S850=2-16mJy. Only 62-76% of 450um sources are 850um detected and 61-81% of 850um sources are 450um detected. The positional uncertainties at 450um are small (1-2.5) and therefore allow a precise identification of multiwavelength counterparts without reliance on detection at 24um or radio wavelengths; we find that only 44% of 450um-selected galaxies and 60% of 850um-sources have 24um or radio counterparts. 450um-selected galaxies peak at <z>=1.95+-0.19 and 850um=selected galaxies peak at <z>=2.16+-0.11. The two samples occupy similar parameter space in redshift and luminosity, while their median SED peak wavelengths differ by ~10-50um (translating to deltaTdust =8-12K, where 450um-selected galaxies are warmer). The similarities of the 450um and 850um populations, yet lack of direct overlap between them, suggests that submillimeter surveys conducted at any single far-infrared wavelength will be significantly incomplete (~>30%) at censusing infrared-luminous star formation at high-z.
We have used the zCOSMOS-bright 10k sample to identify 3244 Spitzer/MIPS 24-micron-selected galaxies with 0.06< S(24um)< 0.50 mJy and I(AB)<22.5, over 1.5 deg^2 of the COSMOS field, and studied different spectral properties, depending on redshift. At 0.2<z<0.3, we found that different reddening laws of common use in the literature explain the dust extinction properties of around 80% of our infrared (IR) sources, within the error bars. For up to 16% of objects, instead, the Halpha/Hbeta ratios are too high for their IR/UV attenuations, which is probably a consequence of inhomogenous dust distributions. In only a few of our galaxies at 0.2<z<0.3 the IR emission could be mainly produced by dust heated by old rather than young stars. Besides, the line ratios of ~22% of our galaxies suggest that they might be star-formation/nuclear-activity composite systems. At 0.5<z<0.7, we estimated galaxy metallicities for 301 galaxies: at least 12% of them are securely below the upper-branch mass-metallicity trend, which is consistent with the local relation. Finally, we performed a combined analysis of the Hdelta equivalent-width versus Dn(4000) diagram for 1722 faint and bright 24um galaxies at 0.6<z<1.0, spanning two decades in mid-IR luminosity. We found that, while secondary bursts of star formation are necessary to explain the position of the most luminous IR galaxies in that diagram, quiescent, exponentially-declining star formation histories can well reproduce the spectral properties of ~40% of the less luminous sources. Our results suggest a transition in the possible modes of star formation at total IR luminosities L(TIR)=(3 +/-2)x10^11 Lsun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا