ﻻ يوجد ملخص باللغة العربية
We have used the zCOSMOS-bright 10k sample to identify 3244 Spitzer/MIPS 24-micron-selected galaxies with 0.06< S(24um)< 0.50 mJy and I(AB)<22.5, over 1.5 deg^2 of the COSMOS field, and studied different spectral properties, depending on redshift. At 0.2<z<0.3, we found that different reddening laws of common use in the literature explain the dust extinction properties of around 80% of our infrared (IR) sources, within the error bars. For up to 16% of objects, instead, the Halpha/Hbeta ratios are too high for their IR/UV attenuations, which is probably a consequence of inhomogenous dust distributions. In only a few of our galaxies at 0.2<z<0.3 the IR emission could be mainly produced by dust heated by old rather than young stars. Besides, the line ratios of ~22% of our galaxies suggest that they might be star-formation/nuclear-activity composite systems. At 0.5<z<0.7, we estimated galaxy metallicities for 301 galaxies: at least 12% of them are securely below the upper-branch mass-metallicity trend, which is consistent with the local relation. Finally, we performed a combined analysis of the Hdelta equivalent-width versus Dn(4000) diagram for 1722 faint and bright 24um galaxies at 0.6<z<1.0, spanning two decades in mid-IR luminosity. We found that, while secondary bursts of star formation are necessary to explain the position of the most luminous IR galaxies in that diagram, quiescent, exponentially-declining star formation histories can well reproduce the spectral properties of ~40% of the less luminous sources. Our results suggest a transition in the possible modes of star formation at total IR luminosities L(TIR)=(3 +/-2)x10^11 Lsun.
We study zCOSMOS-bright optical spectra for 609 Spitzer/MIPS 24 micron-selected galaxies with S(24um)> 0.30 mJy and I<22.5 (AB mag) over 1.5 sq. deg. of the COSMOS field. From emission-line diagnostics we find that: 1) star-formation rates (SFR) deri
We use the current sample of ~10,000 zCOSMOS spectra of sources selected with I(AB) < 22.5 to define the density field out to z~1, with much greater resolution in the radial dimension than has been possible with either photometric redshifts or weak l
The Spitzer Space Telescope has undertaken the deepest ever observations of the 24 micron sky in the ELAIS-N1 field as part of GOODS Science Verification observations. We present the shape of the 24 micron source counts in the flux range 20-1000 micr
We have analysed a sample of 574 Spitzer 4.5 micron-selected galaxies with [4.5]<23 and Ks_auto>24 (AB) over the UltraVISTA ultra-deep COSMOS field. Our aim is to investigate whether these mid-IR bright, near-IR faint sources contribute significantly
We investigate the close environment of 203 Spitzer 24 micron-selected sources at 0.6<z<1.0 using zCOSMOS-bright redshifts and spectra of I<22.5 AB mag galaxies, over 1.5 sq. deg. of the COSMOS field. We quantify the degree of passivity of the LIRG a