ترغب بنشر مسار تعليمي؟ اضغط هنا

Artificial Immune Systems (2010)

106   0   0.0 ( 0 )
 نشر من قبل Uwe Aickelin
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The human immune system has numerous properties that make it ripe for exploitation in the computational domain, such as robustness and fault tolerance, and many different algorithms, collectively termed Artificial Immune Systems (AIS), have been inspired by it. Two generations of AIS are currently in use, with the first generation relying on simplified immune models and the second generation utilising interdisciplinary collaboration to develop a deeper understanding of the immune system and hence produce more complex models. Both generations of algorithms have been successfully applied to a variety of problems, including anomaly detection, pattern recognition, optimisation and robotics. In this chapter an overview of AIS is presented, its evolution is discussed, and it is shown that the diversification of the field is linked to the diversity of the immune system itself, leading to a number of algorithms as opposed to one archetypal system. Two case studies are also presented to help provide insight into the mechanisms of AIS; these are the idiotypic network approach and the Dendritic Cell Algorithm.



قيم البحث

اقرأ أيضاً

If a computer node is infected by a virus, worm or a backdoor, then this is a security risk for the complete network structure where the node is associated. Existing Network Intrusion Detection Systems (NIDS) provide a certain amount of support for t he identification of such infected nodes but suffer from the need of plenty of communication and computational power. In this article, we present a novel approach called AGNOSCO to support the identification of infected nodes through the usage of artificial ant colonies. It is shown that AGNOSCO overcomes the communication and computational power problem while identifying infected nodes properly.
The traditional production paradigm of large batch production does not offer flexibility towards satisfying the requirements of individual customers. A new generation of smart factories is expected to support new multi-variety and small-batch customi zed production modes. For that, Artificial Intelligence (AI) is enabling higher value-added manufacturing by accelerating the integration of manufacturing and information communication technologies, including computing, communication, and control. The characteristics of a customized smart factory are to include self-perception, operations optimization, dynamic reconfiguration, and intelligent decision-making. The AI technologies will allow manufacturing systems to perceive the environment, adapt to the external needs, and extract the process knowledge, including business models, such as intelligent production, networked collaboration, and extended service models. This paper focuses on the implementation of AI in customized manufacturing (CM). The architecture of an AI-driven customized smart factory is presented. Details of intelligent manufacturing devices, intelligent information interaction, and construction of a flexible manufacturing line are showcased. The state-of-the-art AI technologies of potential use in CM, i.e., machine learning, multi-agent systems, Internet of Things, big data, and cloud-edge computing are surveyed. The AI-enabled technologies in a customized smart factory are validated with a case study of customized packaging. The experimental results have demonstrated that the AI-assisted CM offers the possibility of higher production flexibility and efficiency. Challenges and solutions related to AI in CM are also discussed.
113 - Uwe Aickelin , Steve Cayzer 2008
Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune Sy stem practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems.
134 - Siqi Liu , Guy Lever , Zhe Wang 2021
Intelligent behaviour in the physical world exhibits structure at multiple spatial and temporal scales. Although movements are ultimately executed at the level of instantaneous muscle tensions or joint torques, they must be selected to serve goals de fined on much longer timescales, and in terms of relations that extend far beyond the body itself, ultimately involving coordination with other agents. Recent research in artificial intelligence has shown the promise of learning-based approaches to the respective problems of complex movement, longer-term planning and multi-agent coordination. However, there is limited research aimed at their integration. We study this problem by training teams of physically simulated humanoid avatars to play football in a realistic virtual environment. We develop a method that combines imitation learning, single- and multi-agent reinforcement learning and population-based training, and makes use of transferable representations of behaviour for decision making at different levels of abstraction. In a sequence of stages, players first learn to control a fully articulated body to perform realistic, human-like movements such as running and turning; they then acquire mid-level football skills such as dribbling and shooting; finally, they develop awareness of others and play as a team, bridging the gap between low-level motor control at a timescale of milliseconds, and coordinated goal-directed behaviour as a team at the timescale of tens of seconds. We investigate the emergence of behaviours at different levels of abstraction, as well as the representations that underlie these behaviours using several analysis techniques, including statistics from real-world sports analytics. Our work constitutes a complete demonstration of integrated decision-making at multiple scales in a physically embodied multi-agent setting. See project video at https://youtu.be/KHMwq9pv7mg.
We create an artificial system of agents (attention-based neural networks) which selectively exchange messages with each-other in order to study the emergence of memetic evolution and how memetic evolutionary pressures interact with genetic evolution of the network weights. We observe that the ability of agents to exert selection pressures on each-other is essential for memetic evolution to bootstrap itself into a state which has both high-fidelity replication of memes, as well as continuing production of new memes over time. However, in this system there is very little interaction between this memetic ecology and underlying tasks driving individual fitness - the emergent meme layer appears to be neither helpful nor harmful to agents ability to learn to solve tasks. Sourcecode for these experiments is available at https://github.com/GoodAI/memes

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا