ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave fidelity studies by varying antenna coupling

117   0   0.0 ( 0 )
 نشر من قبل Ulrich Kuhl
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fidelity decay in a microwave billiard is considered, where the coupling to an attached antenna is varied. The resulting quantity, coupling fidelity, is experimentally studied for three different terminators of the varied antenna: a hard wall reflection, an open wall reflection, and a 50 Ohm load, corresponding to a totally open channel. The model description in terms of an effective Hamiltonian with a complex coupling constant is given. Quantitative agreement is found with the theory obtained from a modified VWZ approach [Verbaarschot et al, Phys. Rep. 129, 367 (1985)].

قيم البحث

اقرأ أيضاً

We propose a method for detecting the presence of synchronization of self-sustained oscillator by external driving with linearly varying frequency. The method is based on a continuous wavelet transform of the signals of self-sustained oscillator and external force and allows one to distinguish the case of true synchronization from the case of spurious synchronization caused by linear mixing of the signals. We apply the method to driven van der Pol oscillator and to experimental data of human heart rate variability and respiration.
This paper presents a dedicated study of plasma-antenna (PA) coupling with the Alfven Eigenmode Active Diagnostic (AEAD) in JET. Stable AEs and their resonant frequencies f, damping rates $gamma$ < 0, and toroidal mode numbers n are measured for vari ous PA separations and limiter versus X-point magnetic configurations. Two stable AEs are observed to be resonantly excited at distinct low and high frequencies in limiter plasmas. The values of f and n do not vary with PA separation. However, $vertgammavert$ increases with PA separation for the low-f, but not high-f, mode, yet this may be due to slightly different edge conditions. The high-f AE is detected throughout the transition from limiter to X-point configuration, though its damping rate increases; the low-f mode, on the other hand, becomes unidentifiable. The linear resistive MHD code CASTOR is used to simulate the frequency scan of an AEAD-like external antenna. For the limiter pulses, the high-f mode is determined to be an n = 0 GAE, while the low-f mode is likely an n = 2 TAE. During the transition from limiter to X-point configuration, CASTOR indicates that n = 1 and 2 EAEs are excited in the edge gap. These results extend previous experimental studies in JET and Alcator C-Mod; validate the computational work performed by Dvornova et al 2020 Phys. Plasmas 27 012507; and provide guidance for the optimization of PA coupling in upcoming JET energetic particle experiments, for which the AEAD will aim to identify the contribution of alpha particles to AE drive during the DT campaign.
84 - S. Huang , C. Chandre , T. Uzer 2006
We present a control procedure to reduce the stochastic ionization of hydrogen atom in a strong microwave field by adding to the original Hamiltonian a comparatively small control term which might consist of an additional set of microwave fields. Thi s modification restores select invariant tori in the dynamics and prevents ionization. We demonstrate the procedure on the one-dimensional model of microwave ionization.
We explore the behaviour of chaotic oscillators in hierarchical networks coupled to an external chaotic system whose intrinsic dynamics is dissimilar to the other oscillators in the network. Specifically, each oscillator couples to the mean-field of the oscillators below it in the hierarchy, and couples diffusively to the oscillator above it in the hierarchy. We find that coupling to one dissimilar external system manages to suppress the chaotic dynamics of all the oscillators in the network at sufficiently high coupling strength. This holds true irrespective of whether the connection to the external system is direct or indirect through oscillators at another level in the hierarchy. Investigating the synchronization properties show that the oscillators have the same steady state at a particular level of hierarchy, whereas the steady state varies across different hierarchical levels. We quantify the efficacy of control by estimating the fraction of random initial states that go to fixed points, a measure analogous to basin stability. These quantitative results indicate the easy controllability of hierarchical networks of chaotic oscillators by an external chaotic system, thereby suggesting a potent method that may help design control strategies.
76 - T. Gorin , H. Kohler , T. Prosen 2006
Symmetries as well as other special conditions can cause anomalous slowing down of fidelity decay. These situations will be characterized, and a family of random matrix models to emulate them generically presented. An analytic solution based on expon entiated linear response will be given. For one representative case the exact solution is obtained from a supersymmetric calculation. The results agree well with dynamical calculations for a kicked top.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا