ترغب بنشر مسار تعليمي؟ اضغط هنا

The magic nature of 132Sn explored through the single-particle states of 133Sn

87   0   0.0 ( 0 )
 نشر من قبل Kate Jones
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomic nuclei have a shell structure where nuclei with magic numbers of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lie outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.



قيم البحث

اقرأ أيضاً

Low-energy excited states in 71,73Ni populated via the {beta} decay of 71,73Co were investigated in an experiment performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). Detailed analysis led to the c onstruction of level schemes of 71,73Ni, which are interpreted using systematics and analyzed using shell model calculations. The 5/2- states attributed to the the f5/2 orbital and positive parity 5/2+ and 7/2+ states from the g9/2 orbital have been identified in both 71,73Ni. In 71Ni the location of a 1/2- {beta}-decaying isomer is proposed and limits are suggested as to the location of the isomer in 73Ni. The location of positive parity cluster states are also identified in 71,73Ni. Beta-delayed neutron branching ratios obtained from this data are given for both 71,73Co.
108 - David Verney 2007
Excited levels were attributed to $^{81}_{31}$Ga$_{50}$ for the first time which were fed in the $beta$-decay of its mother nucleus $^{81}$Zn produced in the fission of $^{nat}$U using the ISOL technique. We show that the structure of this nucleus is consistent with that of the less exotic proton-deficient N=50 isotones within the assumption of strong proton Z=28 and neutron N=50 effective shell effects.
75 - Sabyasachi Nag , Arti Garg , 2015
We analyze the nature of the single particle states, away from the Dirac point, in the presence of long-range charge impurities in a tight-binding model for electrons on a two-dimensional honeycomb lattice which is of direct relevance for graphene. F or a disorder potential $V(vec{r})=V_0exp(-|vec{r}-vec{r}_{imp}|^2/xi^2)$, we demonstrate that not only the Dirac state but all the single particle states remain extended for weak enough disorder. Based on our numerical calculations of inverse participation ratio, dc conductivity, diffusion coefficient and the localization length from time evolution dynamics of the wave packet, we show that the threshold $V_{th}$ required to localize a single particle state of energy $E(vec{k})$ is minimum for the states near the band edge and is maximum for states near the band center, implying a mobility edge starting from the band edge for weak disorder and moving towards the band center as the disorder strength increases. This can be explained in terms of the low energy Hamiltonian at any point $vec{k}$ which has the same nature as that at the Dirac point. From the nature of the eigenfunctions it follows that a weak long range impurity will cause weak anti localization effects, which can be suppressed, giving localization if the strength of impurities is sufficiently large to cause inter-valley scattering. The inter valley spacing $2|vec{k}|$ increases as one moves in from the band edge towards the band center, which is reflected in the behavior of $V_{th}$ and the mobility edge.
96 - A. Astier , M.-G. Porquet 2013
The close similarity between the shell structures in the 132Sn and 208Pb regions is a well known phenomenon. Thus, using the correspondence between the high-j orbits located above the Z=50 and Z=82 shell gaps, we discuss the evolutions of the fully a ligned states with one broken proton pair in the N=82 and N=126 isotones. A long-lived isomeric state was discovered in 217Pa more than thirty years ago and despite two other experiments giving new experimental results, the discussions on its main properties (spin, parity, configuration) remained inconclusive. Then, using the comparison with the I^pi=17/2^+ isomeric state recently measured in 139La, the isomeric state of 217Pa is assigned as the fully aligned state of the (pi h_{9/2})^2(pi f_{7/2})^1 configuration.
Single-particle levels of seven magic nuclei are calculated within the Energy Density Functional (EDF) method by Fayans et al. Thr
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا