ﻻ يوجد ملخص باللغة العربية
Excited levels were attributed to $^{81}_{31}$Ga$_{50}$ for the first time which were fed in the $beta$-decay of its mother nucleus $^{81}$Zn produced in the fission of $^{nat}$U using the ISOL technique. We show that the structure of this nucleus is consistent with that of the less exotic proton-deficient N=50 isotones within the assumption of strong proton Z=28 and neutron N=50 effective shell effects.
Atomic masses of the neutron-rich isotopes $^{76-80}$Zn, $^{78-83}$Ga, $^{80-85}Ge, $^{81-87}$As and $^{84-89}$Se have been measured with high precision using the Penning trap mass spectrometer JYFLTRAP at the IGISOL facility. The masses of $^{82,83}
Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and n
New levels were attributed to $^{81}_{31}$Ga$_{50}$ and $^{83}_{32}$Ge$_{51}$ which were fed by the $beta$-decay of their respective mother nuclei $^{81}_{30}$Zn$_{51}$ and $^{83}_{31}$Ga$_{52}$ produced by fission at the PARRNe ISOL set-up installed
$beta$-decay rates play a decisive role in understanding the nucleosynthesis of heavy elements and are governed by microscopic nuclear-structure information. A sudden shortening of the half-lives of Ni isotopes beyond $N=50$ was observed at the RIKEN
The nuclear magnetic moment of the ground state of $^{55}$Ni ($I^{pi}=3/2^{-}, T_{1/2}=204$ ms) has been deduced to be $|mu$^{55}Ni)$|=(0.976 pm 0.026)$ $mu_N$ using the $beta$-NMR technique. Results of a shell model calculation in the full textit{fp