ﻻ يوجد ملخص باللغة العربية
In this contribution, we present an introduction to the physical principles underlying the quantum Hall effect. The field theoretic approach to the integral and fractional effect is sketched, with some emphasis on the mechanism of electromagnetic gauge anomaly cancellation by chiral degrees of freedom living on the edge of the sample. Applications of this formalism to the design and theoretical interpretation of interference experiments are outlined.
We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can develop instabilities to appropriate inter-wire ele
The dichotomy between fermions and bosons is at the root of many physical phenomena, from metallic conduction of electricity to super-fluidity, and from the periodic table to coherent propagation of light. The dichotomy originates from the symmetry o
The interplay between interaction and disorder-induced localization is of fundamental interest. This article addresses localization physics in the fractional quantum Hall state, where both interaction and disorder have nonperturbative consequences. W
The lowest-Landau-level anyon model becomes nonperiodic in the statistics parameter when the finite size of the attached flux tubes is taken into account. The finite-size effects cause the inverse proportional relation between the critical filling fa
We study the current correlations of fractional quantum Hall edges at the output of a quantum point contact (QPC) subjected to a temperature gradient. This out-of-equilibrium situation gives rise to a form of temperature-activated shot noise, dubbed