ترغب بنشر مسار تعليمي؟ اضغط هنا

High cooperativity coupling of electron-spin ensembles to superconducting cavities

82   0   0.0 ( 0 )
 نشر من قبل David Schuster
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron spins in solids are promising candidates for quantum memories for superconducting qubits because they can have long coherence times, large collective couplings, and many quantum bits can be encoded into the spin-waves of a single ensemble. We demonstrate the coupling of electron spin ensembles to a superconducting transmission-line resonator at coupling strengths greatly exceeding the cavity decay rate and comparable to spin linewidth. We also use the enhanced coupling afforded by the small cross-section of the transmission line to perform broadband spectroscopy of ruby at millikelvin temperatures at low powers. In addition, we observe hyperfine structure in diamond P1 centers and time domain saturation-relaxation of the spins.

قيم البحث

اقرأ أيضاً

Long-distance two-qubit coupling, mediated by a superconducting resonator, is a leading paradigm for performing entangling operations in a quantum computer based on spins in semiconducting materials. Here, we demonstrate a novel, controllable spin-ph oton coupling based on a longitudinal interaction between a spin qubit and a resonator. We show that coupling a singlet-triplet qubit to a high-impedance superconducting resonator can produce the desired longitudinal coupling when the qubit is driven near the resonators frequency. We measure the energy splitting of the qubit as a function of the drive amplitude and frequency of a microwave signal applied near the resonator antinode, revealing pronounced effects close to the resonator frequency due to longitudinal coupling. By tuning the amplitude of the drive, we reach a regime with longitudinal coupling exceeding $1$ MHz. This demonstrates a new mechanism for qubit-resonator coupling, and represents a stepping stone towards producing high-fidelity two-qubit gates mediated by a superconducting resonator.
We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single electron transistor (SSET) in the vicinity of the Josephson quasiparticle (JQP) and double Josephson quasiparticle (DJQP) resonances. For weak co upling and wide separation of dynamical timescales, we find that for either superconducting resonance the dynamics of the resonator is given by a Fokker-Planck equation, i.e., the SSET behaves effectively as an equilibrium heat bath, characterised by an effective temperature, which also damps the resonator and renormalizes its frequency. Depending on the gate and drain-source voltage bias points with respect to the superconducting resonance, the SSET can also give rise to an instability in the mechanical resonator marked by negative damping and temperature within the appropriate Fokker-Planck equation. Furthermore, sufficiently close to a resonance, we find that the Fokker-Planck description breaks down. We also point out that there is a close analogy between coupling a nanomechanical resonator to a SSET in the vicinity of the JQP resonance and Doppler cooling of atoms by means of lasers.
Interfacing superconducting quantum processors, working in the GHz frequency range, with optical quantum networks and atomic qubits is a challenging task for the implementation of distributed quantum information processing as well as for quantum comm unication. Using spin ensembles of rare earth ions provide an excellent opportunity to bridge microwave and optical domains at the quantum level. In this letter, we demonstrate magnetic coupling of Er$^{3+}$ spins doped in Y$_{2}$SiO$_{5}$ crystal to a high-Q coplanar superconducting resonator.
Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two qubit interactions and gates having been demonstrated. These experime nts show that two nearby qubits can be readily coupled with local interactions. Performing gates between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a quantum bus, which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.
The problem of coupling multiple spin ensembles through cavity photons is revisited by using PyBTM organic radicals and a high-$T_c$ superconducting coplanar resonator. An exceptionally strong coupling is obtained and up to three spin ensembles are s imultaneously coupled. The ensembles are made physically distinguishable by chemically varying the $g$ factor and by exploiting the inhomogeneities of the applied magnetic field. The coherent mixing of the spin and field modes is demonstrated by the observed multiple anticrossing, along with the simulations performed within the input-output formalism, and quantified by suitable entropic measures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا