ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of a nanomechanical resonator coupled to a superconducting single-electron transistor

84   0   0.0 ( 0 )
 نشر من قبل Andrew Armour
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single electron transistor (SSET) in the vicinity of the Josephson quasiparticle (JQP) and double Josephson quasiparticle (DJQP) resonances. For weak coupling and wide separation of dynamical timescales, we find that for either superconducting resonance the dynamics of the resonator is given by a Fokker-Planck equation, i.e., the SSET behaves effectively as an equilibrium heat bath, characterised by an effective temperature, which also damps the resonator and renormalizes its frequency. Depending on the gate and drain-source voltage bias points with respect to the superconducting resonance, the SSET can also give rise to an instability in the mechanical resonator marked by negative damping and temperature within the appropriate Fokker-Planck equation. Furthermore, sufficiently close to a resonance, we find that the Fokker-Planck description breaks down. We also point out that there is a close analogy between coupling a nanomechanical resonator to a SSET in the vicinity of the JQP resonance and Doppler cooling of atoms by means of lasers.

قيم البحث

اقرأ أيضاً

80 - A.D. Armour 2003
We analyze the dynamics of a nano-mechanical resonator coupled to a single-electron transistor (SET) in the regime where the resonator behaves classically. A master equation is derived describing the dynamics of the coupled system which is then used to obtain equations of motion for the average charge state of the SET and the average position of the resonator. We show that the action of the SET on the resonator is very similar to that of a thermal bath, as it leads to a steady-state probability-distribution for the resonator which can be described by mean values of the resonator position, a renormalized frequency, an effective temperature and an intrinsic damping constant. Including the effects of extrinsic damping and finite temperature, we find that there remain experimentally accessible regimes where the intrinsic damping of the resonator still dominates its behavior. We also obtain the average current through the SET as a function of the coupling to the resonator.
104 - M. Turek , J. Siewert , K. Richter 2005
We present a linear-response theory for the thermopower of a single-electron transistor consisting of a superconducting island weakly coupled to two normal-conducting leads (NSN SET). The thermopower shows oscillations with the same periodicity as th e conductance and is rather sensitive to the size of the superconducting gap. In particular, the previously studied sawtooth-like shape of the thermopower for a normal-conducting single-electron device is qualitatively changed even for small gap energies.
Interfacing superconducting quantum processors, working in the GHz frequency range, with optical quantum networks and atomic qubits is a challenging task for the implementation of distributed quantum information processing as well as for quantum comm unication. Using spin ensembles of rare earth ions provide an excellent opportunity to bridge microwave and optical domains at the quantum level. In this letter, we demonstrate magnetic coupling of Er$^{3+}$ spins doped in Y$_{2}$SiO$_{5}$ crystal to a high-Q coplanar superconducting resonator.
126 - Elinor K. Irish , K. Schwab 2003
We show two effects as a result of considering the second-order correction to the spectrum of a nanomechanical resonator electrostatically coupled to a Cooper-pair box. The spectrum of the Cooper-pair box is modified in a way which depends on the Foc k state of the resonator. Similarly, the frequency of the resonator becomes dependent on the state of the Cooper-pair box. We consider whether these frequency shifts could be utilized to prepare the nanomechanical resonator in a Fock state, to perform a quantum non-demolition measurement of the resonator Fock state, and to distinguish the phase states of the Cooper-pair box.
224 - W. W. Xue , Z. Ji , Feng Pan 2008
We have directly measured the quantum noise of a superconducting single-electron transistor (S-SET) embedded in a microwave resonator consisting of a superconducting LC tank circuit. Using an effective bath description, we find that the S-SET provide s damping of the resonator modes proportional to its differential conductance and has an effective temperature that depends strongly on the S-SET bias conditions. In the vicinity of a double Cooper pair resonance, when both resonances are red detuned the S-SET effective temperature can be well below both the ambient temperature and the energy scale of the bias voltage. When blue detuned, the S-SET shows negative differential conductivity,
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا