Suppose that $(X, g)$ is a conformally compact $(n+1)$-dimensional manifold that is hyperbolic at infinity in the sense that outside of a compact set $K subset X$ the sectional curvatures of $g$ are identically equal to minus one. We prove that the counting function for the resolvent resonances has maximal order of growth $(n+1)$ generically for such manifolds.
We study the inverse resonance problem for conformally compact manifolds which are hyperbolic outside a compact set. Our results include compactness of isoresonant metrics in dimension two and of isophasal negatively curved metrics in dimension three
. In dimensions four or higher we prove topological finiteness theorems under the negative curvature assumption.
For a complete, finite volume real hyperbolic n-manifold M, we investigate the map between homology of the cusps of M and the homology of $M$. Our main result provides a proof of a result required in a recent paper of Frigerio, Lafont, and Sisto.
We study the analytic torsion of odd-dimensional hyperbolic orbifolds $Gamma backslash mathbb{H}^{2n+1}$, depending on a representation of $Gamma$. Our main goal is to understand the asymptotic behavior of the analytic torsion with respect to sequenc
es of representations associated to rays of highest weights.
We prove an existence result for the Poisson equation on non-compact Riemannian manifolds satisfying weighted Poincare inequalities outside compact sets. Our result applies to a large class of manifolds including, for instance, all non-parabolic mani
folds with minimal positive Greens function vanishing at infinity. On the source function we assume a sharp pointwise decay depending on the weight appearing in the Poincare inequality and on the behavior of the Ricci curvature at infinity. We do not require any curvature or spectral assumptions on the manifold.
We investigate existence and uniqueness of bounded solutions of parabolic equations with unbounded coefficients in $Mtimes mathbb R_+$, where $M$ is a complete noncompact Riemannian manifold. Under specific assumptions, we establish existence of solu
tions satisfying prescribed conditions at infinity, depending on the direction along which infinity is approached. Moreover, the large-time behavior of such solutions is studied. We consider also elliptic equations on $M$ with similar conditions at infinity.
D. Borthwick
,T. J. Christiansen
,P. D. Hislop
.
(2010)
.
"Resonances for manifolds hyperbolic at infinity: optimal lower bounds on order of growth"
.
David Borthwick
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا