ترغب بنشر مسار تعليمي؟ اضغط هنا

An OpenMath Content Dictionary for Tensor Concepts

104   0   0.0 ( 0 )
 نشر من قبل Joseph Collins
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Joseph B. Collins




اسأل ChatGPT حول البحث

We introduce a new OpenMath content dictionary, named tensor1, containing symbols for the expression of tensor formulas. These symbols support the expression of non-Cartesian coordinates and invariant, multilinear expressions in the context of coordinate transformations. While current OpenMath symbols support the expression of linear algebra formulas using matrices and vectors, we find that there is an underlying assumption of Cartesian, or standard, coordinates that makes the expression of general tensor formulas difficult, if not impossible. In introducing these new OpenMath symbols for the expression of tensor formulas, we attempt to maintain, as much as possible, consistency with prior OpenMath symbol definitions for linear algebra.

قيم البحث

اقرأ أيضاً

115 - Edoardo Di Napoli 2013
Mathematical operators whose transformation rules constitute the building blocks of a multi-linear algebra are widely used in physics and engineering applications where they are very often represented as tensors. In the last century, thanks to the ad vances in tensor calculus, it was possible to uncover new research fields and make remarkable progress in the existing ones, from electromagnetism to the dynamics of fluids and from the mechanics of rigid bodies to quantum mechanics of many atoms. By now, the formal mathematical and geometrical properties of tensors are well defined and understood; conversely, in the context of scientific and high-performance computing, many tensor- related problems are still open. In this paper, we address the problem of efficiently computing contractions among two tensors of arbitrary dimension by using kernels from the highly optimized BLAS library. In particular, we establish precise conditions to determine if and when GEMM, the kernel for matrix products, can be used. Such conditions take into consideration both the nature of the operation and the storage scheme of the tensors, and induce a classification of the contractions into three groups. For each group, we provide a recipe to guide the users towards the most effective use of BLAS.
Tensor contraction (TC) is an important computational kernel widely used in numerous applications. It is a multi-dimensional generalization of matrix multiplication (GEMM). While Strassens algorithm for GEMM is well studied in theory and practice, ex tending it to accelerate TC has not been previously pursued. Thus, we believe this to be the first paper to demonstrate how one can in practice speed up tensor contraction with Strassens algorithm. By adopting a Block-Scatter-Matrix format, a novel matrix-centric tensor layout, we can conceptually view TC as GEMM for a general stride storage, with an implicit tensor-to-matrix transformation. This insight enables us to tailor a recent state-of-the-art implementation of Strassens algorithm to TC, avoiding explicit transpositions (permutations) and extra workspace, and reducing the overhead of memory movement that is incurred. Performance benefits are demonstrated with a performance model as well as in practice on modern single core, multicore, and distributed memory parallel architectures, achieving up to 1.3x speedup. The resulting implementations can serve as a drop-in replacement for various applications with significant speedup.
Tensors (also commonly seen as multi-linear operators or as multi-dimensional arrays) are ubiquitous in scientific computing and in data science, and so are the software efforts for tensor operations. Particularly in recent years, we have observed an explosion in libraries, compilers, packages, and toolboxes; unfortunately these efforts are very much scattered among the different scientific domains, and inevitably suffer from replication, suboptimal implementations, and in many cases, limited visibility. As a first step towards countering these inefficiencies, here we survey and loosely classify software packages related to tensor computations. Our aim is to assemble a comprehensive and up-to-date snapshot of the tensor software landscape, with the intention of helping both users and developers. Aware of the difficulties inherent in any multi-discipline survey, we very much welcome the readers help in amending and expanding our software list, which currently features 72 projects.
We introduce a graphical user interface for constructing arbitrary tensor networks and specifying common operations like contractions or splitting, denoted GuiTeNet. Tensors are represented as nodes with attached legs, corresponding to the ordered di mensions of the tensor. GuiTeNet visualizes the current network, and instantly generates Python/NumPy source code for the hitherto sequence of user actions. Support for additional programming languages is planned for the future. We discuss the elementary operations on tensor networks used by GuiTeNet, together with high-level optimization strategies. The software runs directly in web browsers and is available online at http://guitenet.org.
In this paper, we develop software for decomposing sparse tensors that is portable to and performant on a variety of multicore, manycore, and GPU computing architectures. The result is a single code whose performance matches optimized architecture-sp ecific implementations. The key to a portable approach is to determine multiple levels of parallelism that can be mapped in different ways to different architectures, and we explain how to do this for the matricized tensor times Khatri-Rao product (MTTKRP) which is the key kernel in canonical polyadic tensor decomposition. Our implementation leverages the Kokkos framework, which enables a single code to achieve high performance across multiple architectures that differ in how they approach fine-grained parallelism. We also introduce a new construct for portable thread-local arrays, which we call compile-time polymorphic arrays. Not only are the specifics of our approaches and implementation interesting for tuning tensor computations, but they also provide a roadmap for developing other portable high-performance codes. As a last step in optimizing performance, we modify the MTTKRP algorithm itself to do a permuted traversal of tensor nonzeros to reduce atomic-write contention. We test the performance of our implementation on 16- and 68-core Intel CPUs and the K80 and P100 NVIDIA GPUs, showing that we are competitive with state-of-the-art architecture-specific codes while having the advantage of being able to run on a variety of architectures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا