ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of slingshot model to the giant radio galaxy DA240 (Brief : DA 240 in slingshot model)

42   0   0.0 ( 0 )
 نشر من قبل Dilip G. Banhatti
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We attempt a slingshot model interpretation of the unusual association of some 1&1/3 dozen nonstellar galaxian objects around the parent optical galaxy of the giant radio galaxy DA 240 (= 0748.6+55.8 (J2000)). Similar interpretation may be possible for another large radio galaxy 3C 31 (= NGC 383 = 0104.6+32.1 (1950.0)).

قيم البحث

اقرأ أيضاً

27 - Sverre Aarseth 2005
(Abridged) In this celebratory contribution, we present some new data from standard star cluster modelling containing primordial binaries and triples, as well as results from a binary black hole simulation with two massive members. In the star cluste r case, the process of mass loss from evolving stars, together with general mass segregation, promotes favourable interactions involving compact subsystems of binaries and triples in the central region. Three-body interactions often lead to energetic ejections, with one or more of the components attaining relatively large terminal velocities which can be observed in principle. The second type of stellar system to be discussed is based on the scenario of two approaching galactic cores with density cusps, each having a massive black hole. After the subsystems become well mixed, the two massive components soon form a hard binary which gains energy by ejecting other members. Such a massive binary has a large cross section and can be very effective in depleting bound stars from the core. Again high-velocity escapers are produced, with their terminal speeds related to the shrinking binary size which eventually leads to coalescence.
We present a detailed study of a peculiar source in the COSMOS survey at z=0.359. Source CXOCJ100043.1+020637 (CID-42) presents two compact optical sources embedded in the same galaxy. The distance between the 2, measured in the HST/ACS image, is 0.4 95 that, at the redshift of the source, corresponds to a projected separation of 2.46 kpc. A large (~1200 km/s) velocity offset between the narrow and broad components of Hbeta has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also the only X-ray source having in its X-ray spectra a strong redshifted broad absorption iron line, and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM data show that the absorption line is variable in energy by 500 eV over 4 years and that the absorber has to be highly ionized, in order not to leave a signature in the soft X-ray spectrum. That these features occur in the same source is unlikely to be a coincidence. We envisage two possible explanations: (1) a gravitational wave recoiling black hole (BH), caught 1-10 Myr after merging, (2) a Type 1/ Type 2 system in the same galaxy where the Type 1 is recoiling due to slingshot effect produced by a triple BH system. The first possibility gives us a candidate gravitational waves recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured AGN.
The interconnect is one of the most critical components in large scale computing systems, and its impact on the performance of applications is going to increase with the system size. In this paper, we will describe Slingshot, an interconnection netwo rk for large scale computing systems. Slingshot is based on high-radix switches, which allow building exascale and hyperscale datacenters networks with at most three switch-to-switch hops. Moreover, Slingshot provides efficient adaptive routing and congestion control algorithms, and highly tunable traffic classes. Slingshot uses an optimized Ethernet protocol, which allows it to be interoperable with standard Ethernet devices while providing high performance to HPC applications. We analyze the extent to which Slingshot provides these features, evaluating it on microbenchmarks and on several applications from the datacenter and AI worlds, as well as on HPC applications. We find that applications running on Slingshot are less affected by congestion compared to previous generation networks.
Thermal gas in the center of galaxy clusters can show substantial motions that generate surface-brightness and temperature discontinuities known as cold fronts. The motions may be triggered by minor or off-axis mergers that preserve the cool core of the system. The dynamics of the thermal gas can also generate radio emission from the intra-cluster medium (ICM) and impact the evolution of clusters radio sources. We aim to study the central region of Abell 1775, a system in an ambiguous dynamical state at $z=0.072$ which is known to host an extended head-tail radio galaxy, with the goal of investigating the connection between thermal and nonthermal components in its center. We made use of a deep (100 ks) Chandra observation accompanied by LOFAR 144 MHz, GMRT 235 MHz and 610 MHz, and VLA 1.4 GHz radio data. We find a spiral-like pattern in the X-ray surface brightness that is mirrored in the temperature and pseudo-entropy maps. Additionally, we characterize an arc-shaped cold front in the ICM. We interpret these features in the context of a slingshot gas tail scenario. The structure of the head-tail radio galaxy breaks at the position of the cold front, showing an extension that is detected only at low frequencies, likely due to its steep and curved spectrum. We speculate that particle reacceleration is occurring in the outer region of this tail, which in total covers a projected size of $sim800$ kpc. We also report the discovery of revived fossil plasma with ultra-steep spectrum radio emission in the cluster core together with a central diffuse radio source that is bounded by the arc-shaped cold front. The results reported in this work demonstrate the interplay between thermal and nonthermal components in the cluster center and the presence of ongoing particle reacceleration in the ICM on different scales.
We generalize the Cosmological Slingshot Scenario for a Slingshot brane moving in a Klebanov-Strassler throat. We show that the horizon and isotropy problems of standard cosmology are avoided, while the flatness problem is acceptably alleviated. Rega rding the primordial perturbations, we identify their vacuum state and elucidate the evolution from the quantum to the classical regimes. Also, we calculate their exact power spectrum showing its compatibility with current data. We discuss the bouncing solution from a four dimensional point of view. In this framework the radial and angular motion of the Slingshot brane are described by two scalar fields. We show that the bouncing solution for the scale factor in String frame is mapped into a monotonically increasing (in conformal time) solution in the Einstein frame. We finally discuss about the regularity of the geometry in Einstein frame.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا