ترغب بنشر مسار تعليمي؟ اضغط هنا

A Runaway Black Hole in COSMOS: Gravitational Wave or Slingshot Recoil?

200   0   0.0 ( 0 )
 نشر من قبل Francesca Civano
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of a peculiar source in the COSMOS survey at z=0.359. Source CXOCJ100043.1+020637 (CID-42) presents two compact optical sources embedded in the same galaxy. The distance between the 2, measured in the HST/ACS image, is 0.495 that, at the redshift of the source, corresponds to a projected separation of 2.46 kpc. A large (~1200 km/s) velocity offset between the narrow and broad components of Hbeta has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also the only X-ray source having in its X-ray spectra a strong redshifted broad absorption iron line, and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM data show that the absorption line is variable in energy by 500 eV over 4 years and that the absorber has to be highly ionized, in order not to leave a signature in the soft X-ray spectrum. That these features occur in the same source is unlikely to be a coincidence. We envisage two possible explanations: (1) a gravitational wave recoiling black hole (BH), caught 1-10 Myr after merging, (2) a Type 1/ Type 2 system in the same galaxy where the Type 1 is recoiling due to slingshot effect produced by a triple BH system. The first possibility gives us a candidate gravitational waves recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured AGN.

قيم البحث

اقرأ أيضاً

The black hole merging rates inferred after the gravitational-wave detection by Advanced LIGO/VIRGO and the relatively high mass of the progenitors are consistent with models of dark matter made of massive primordial black holes (PBH). PBH binaries e mit gravitational waves in a broad range of frequencies that will be probed by future space interferometers (LISA) and pulsar timing arrays (PTA). The amplitude of the stochastic gravitational-wave background expected for PBH dark matter is calculated taking into account various effects such as initial eccentricity of binaries, PBH velocities, mass distribution and clustering. It allows a detection by the LISA space interferometer, and possibly by the PTA of the SKA radio-telescope. Interestingly, one can distinguish this background from the one of non-primordial massive binaries through a specific frequency dependence, resulting from the maximal impact parameter of binaries formed by PBH capture, depending on the PBH velocity distribution and their clustering properties. Moreover, we find that the gravitational wave spectrum is boosted by the width of PBH mass distribution, compared with that of the monochromatic spectrum. The current PTA constraints already rule out broad-mass PBH models covering more than three decades of masses, but evading the microlensing and CMB constraints due to clustering.
Recent results indicate that the compact lenticular galaxy NGC 1277 in the Perseus Cluster contains a black hole of approximately 10 billion solar masses. This far exceeds the expected mass of the central black hole in a galaxy of the modest dimensio ns of NGC 1277. We suggest that this giant black hole was ejected from the nearby giant galaxy NGC 1275 and subsequently captured by NGC 1277. The ejection was the result of gravitational radiation recoil when two large black holes merged following the merger of two giant ellipticals that helped to form NGC 1275. The black hole wandered in the cluster core until it was captured in a close encounter with NGC 1277. The migration of black holes in clusters may be a common occurrence.
We examine how future gravitational-wave measurements from merging black holes (BHs) can be used to infer the shape of the black-hole mass function, with important implications for the study of star formation and evolution and the properties of binar y BHs. We model the mass function as a power law, inherited from the stellar initial mass function, and introduce lower and upper mass cutoff parameterizations in order to probe the minimum and maximum BH masses allowed by stellar evolution, respectively. We initially focus on the heavier BH in each binary, to minimize model dependence. Taking into account the experimental noise, the mass measurement errors and the uncertainty in the redshift-dependence of the merger rate, we show that the mass function parameters, as well as the total rate of merger events, can be measured to <10% accuracy within a few years of advanced LIGO observations at its design sensitivity. This can be used to address important open questions such as the upper limit on the stellar mass which allows for BH formation and to confirm or refute the currently observed mass gap between neutron stars and BHs. In order to glean information on the progenitors of the merging BH binaries, we then advocate the study of the two-dimensional mass distribution to constrain parameters that describe the two-body system, such as the mass ratio between the two BHs, in addition to the merger rate and mass function parameters. We argue that several years of data collection can efficiently probe models of binary formation, and show, as an example, that the hypothesis that some gravitational-wave events may involve primordial black holes can be tested. Finally, we point out that in order to maximize the constraining power of the data, it may be worthwhile to lower the signal-to-noise threshold imposed on each candidate event and amass a larger statistical ensemble of BH mergers.
The quasar SDSS J105041.35+345631.3 (z = 0.272) has broad emission lines blueshifted by 3500 km/s relative to the narrow lines and the host galaxy. Such an object may be a candidate for a recoiling supermassive black hole, binary black hole, a superp osition of two objects, or an unusual geometry for the broad emission-line region. The absence of narrow lines at the broad line redshift argues against superposition. New Keck spectra of J1050+3546 place tight constraints on the binary model. The combination of large velocity shift and symmetrical H-beta profile, as well as aspects of the narrow line spectrum, make J1050+3546 an interesting candidate for black hole recoil. Other aspects of the spectrum, however, suggest that the object is most likely an extreme case of a ``double-peaked emitter. We discuss possible observational tests to determine the true nature of this exceptional object.
231 - Vijay Varma , Maximiliano Isi , 2020
Gravitational waves carry energy, angular momentum, and linear momentum. In generic binary black hole mergers, the loss of linear momentum imparts a recoil velocity, or a kick, to the remnant black hole. We exploit recent advances in gravitational wa veform and remnant black hole modeling to extract information about the kick from the gravitational wave signal. Kick measurements such as these are astrophysically valuable, enabling independent constraints on the rate of second-generation mergers. Further, we show that kicks must be factored into future ringdown tests of general relativity with third-generation gravitational wave detectors to avoid systematic biases. We find that, although little information can be gained about the kick for existing gravitational wave events, interesting measurements will soon become possible as detectors improve. We show that, once LIGO and Virgo reach their design sensitivities, we will reliably extract the kick velocity for generically precessing binaries--including the so-called superkicks, reaching up to 5000 km/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا