ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic Study of the Superconducting State of the Iron Pnictide RbFe_2As_2

58   0   0.0 ( 0 )
 نشر من قبل Rustem Khasanov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A study of the temperature and field dependence of the penetration depth lambda of the superconductor RbFe_2As_2 (T_c=2.52 K) was carried out by means of muon-spin rotation measurements. In addition to the zero temperature value of the penetration depth lambda(0)=267(5) nm, a determination of the upper critical field B_c2(0)=2.6(2) T was obtained. The temperature dependence of the superconducting carrier concentration is discussed within the framework of a multi-gap scenario. Compared to the other 122 systems which exhibit much higher Fermi level, a strong reduction of the large gap BCS ratio 2Delta/k_B T_c is observed. This is interpreted as a consequence of the absence of interband processes. Indications of possible pair-breaking effect are also discussed.

قيم البحث

اقرأ أيضاً

Nematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measu ring the angular dependence of the in-plane and out-of-plane magnetoresistivity of Ba0.5K0.5Fe2As2 single crystals. We find large twofold oscillations in the vicinity of the superconducting transition, when the direction of applied magnetic field is rotated within the basal plane. To avoid the influences from sample geometry or current flow direction, the sample was designed as Corbino-shape for in-plane and mesa-shape for out-of-plane measurements. Theoretical analysis shows that the nematic superconductivity arises from the weak mixture of the quasi-degenerate s-wave and d-wave components of the superconducting condensate, most probably induced by a weak anisotropy of stresses inherent to single crystals.
100 - K. Mydeen , E. Lengyel , Z. Deng 2010
Electrical-resistivity and magnetic-susceptibility measurements under hydrostatic pressure up to p = 2.75 GPa have been performed on superconducting LiFeP. A broad superconducting (SC) region exists in the temperature - pressure (T-p) phase diagram. No indications for a spin-density-wave transition have been found, but an enhanced resistivity coefficient at low pressures hints at the presence of magnetic fluctuations. Our results show that the superconducting state in LiFeP is more robust than in the isostructural and isoelectronic LiFeAs. We suggest that this finding is related to the nearly regular [FeP_4] tetrahedron in LiFeP.
We report on isofield magnetization curves obtained as a function of temperature in two single crystals of $Ba_{1-x}K_xFe_2As_2$ with superconducting transition temperature $T_c$=28K and 32.7 K. Results obtained for fields above 20 kOe show a well de fined rounding effect on the reversible region extending 1-3 K above $T_c(H)$ masking the transition. This rounding appears to be due to three-dimensional critical fluctuations, as the higher field curves obey a well know scaling law for this type of critical fluctuations. We also analysed the asymptotic behavior of $sqrt M$vs.T curves in the reversible region which probes the shape of the gap near $T_c(H)$. Results of the analysis suggests that phase fluctuations are important in $Ba_{1-x}K_xFe_2As_2$ which is consistent with nodes in the gap.
Local magnetic measurements are used to quantitatively characterize heterogeneity and flux line pinning in PrFeAsO_1-y and NdFeAs(O,F) superconducting single crystals. In spite of spatial fluctuations of the critical current density on the macroscopi c scale, it is shown that the major contribution comes from collective pinning of vortex lines by microscopic defects by the mean-free path fluctuation mechanism. The defect density extracted from experiment corresponds to the dopant atom density, which means that dopant atoms play an important role both in vortex pinning and in quasiparticle scattering. In the studied underdoped PrFeAsO_1-y and NdFeAs(O,F) crystals, there is a background of strong pinning, which we attribute to spatial variations of the dopant atom density on the scale of a few dozen to one hundred nm. These variations do not go beyond 5% - we therefore do not find any evidence for coexistence of the superconducting and the antiferromagnetic phase. The critical current density in sub-T fields is characterized by the presence of a peak effect, the location of which in the (B,T)-plane is consistent with an order-disorder transition of the vortex lattice.
We report on muon spin rotation (muSR) studies of the superconducting and magnetic properties of the ternary intermetallic stannide Ca3Ir4Sn13. This material has recently been the focus of intense research activity due to a proposed interplay of ferr omagnetic spin fluctuations and superconductivity. In the temperature range T=1.6-200 K, we find that the zero-field muon relaxation rate is very low and does not provide evidence for spin fluctuations on the muSR time scale. The field-induced magnetization cannot be attributed to localized magnetic moments. In particular, our muSR data reveal that the anomaly observed in thermal and transport properties at T*~38 K is not of magnetic origin. Results for the transverse-field muon relaxation rate at T=0.02-12 K, suggest that superconductivity emerges out of a normal state that is not of a Fermi-liquid type. This is unusual for an electronic system lacking partially filled f-electron shells. The superconducting state is dominated by a nodeless order parameter with a London penetration depth of lambda=385(1) nm and the electron-phonon pairing interaction is in the strong-coupling limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا