ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Radiation-Reaction in Relativistic Laser Acceleration

108   0   0.0 ( 0 )
 نشر من قبل Lance Labun
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of this paper is twofold: to explore the response of classical charges to electromagnetic force at the level of unity in natural units and to establish a criterion that determines physical parameters for which the related radiation-reaction effects are detectable. In pursuit of this goal, the Landau-Lifshitz equation is solved analytically for an arbitrary (transverse) electromagnetic pulse. A comparative study of the radiation emission of an electron in a linearly polarized pulse for the Landau-Lifshitz equation and for the Lorentz force equation reveals the radiation-reaction dominated regime, in which radiation-reaction effects overcome the influence of the external fields. The case of a relativistic electron that is slowed down by a counter propagating electromagnetic pulse is studied in detail. We further show that when the electron experiences acceleration of order unity, the dynamics of the Lorentz force equation, the Landau-Lifshitz equation and the Lorentz-Abraham-Dirac equation all result in different radiation emission that could be distinguished in experiment. Finally, our analytic and numerical results are compared with those appearing in the literature.



قيم البحث

اقرأ أيضاً

Non-linear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including the radiation damping for the quantum parameter hwx-ray/E<1 and an arbitrary radiation pa rameter Kai. The electron energy loss, along with its side scattering by the ponderomotive force, makes the scattering in the vicinity of high laser field nearly impossible at high electron energies. The use of a second, co-propagating laser pulse as a booster is shown to solve this problem.
We study electron acceleration in a plasma wakefield under the influence of the radiation-reaction force caused by the transverse betatron oscillations of the electron in the wakefield. Both the classical and the strong quantum-electrodynamic (QED) l imits of the radiation reaction are considered. For the constant accelerating force, we show that the amplitude of the oscillations of the QED parameter $chi$ in the radiation-dominated regime reaches the equilibrium value determined only by the magnitude of the accelerating field, while the averaged over betatron oscillations radiation reaction force saturates at the value smaller than the accelerating force and thus is incapable of preventing infinite acceleration. We find the parameters of the electron bunch and the plasma accelerator for which reaching such a regime is possible. We also study effects of the dephasing and the corresponding change of accelerating force over the course of acceleration and conclude that the radiation-dominated regime is realized both in cases of single-stage acceleration with slow dephasing (usually corresponding to bunch-driven plasma accelerators) and multi-stage acceleration with fast dephasing (corresponding to the use of laser-driven accelerators).
We discuss radiation reaction effects on charges propagating in ultra-intense laser fields. Our analysis is based on an analytic solution of the Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of a symmetry breaking parame ter associated with the violation of null translation invariance in the direction opposite to the laser beam. As the Landau-Lifshitz equation is nonlinear the energy transfer within the pulse is rather sensitive to initial conditions. This is elucidated by comparing colliding and fixed target modes in electron laser collisions.
The future applications of the short-duration, multi-MeV ion beams produced in the interaction of high-intensity laser pulses with solid targets will require improvements in the conversion efficiency, peak ion energy, beam monochromaticity, and colli mation. Regimes based on Radiation Pressure Acceleration (RPA) might be the dominant ones at ultrahigh intensities and be most suitable for specific applications. This regime may be reached already with present-day intensities using circularly polarized (CP) pulses thanks to the suppression of fast electron generation, so that RPA dominates over sheath acceleration at any intensity. We present a brief review of previous work on RPA with CP pulses and a few recent results. Parametric studies in one dimension were performed to identify the optimal thickness of foil targets for RPA and to study the effect of a short-scalelength preplasma. Three-dimensional simulations showed the importance of ``flat-top radial intensity profiles to minimise the rarefaction of thin targets and to address the issue of angular momentum conservation and absorption.
We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser pulses of moderate intensity and long duration. The effect becomes sizeable for particles that gain almost no energy through the interaction with the laser pulse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا