ﻻ يوجد ملخص باللغة العربية
High purity TeO2 crystals are produced to be used for the search for the neutrinoless double beta decay of 130Te. Dedicated production lines for raw material synthesis, crystal growth and surface processing were built compliant with radio-purity constraints specific to rare event physics experiments. High sensitivity measurements of radio-isotope concentrations in raw materials, reactants, consumables, ancillaries and intermediary products used for TeO2 crystals production are reported. Production and certification protocols are presented and resulting ready-to-use TeO2 crystals are described.
High purity Zinc Selenide (ZnSe) crystals are produced starting from elemental Zn and Se to be used for the search of the neutrinoless double beta decay (0{ u}DBD) of 82Se. In order to increase the number of emitting nuclides, enriched 82Se is used.
We propose a novel detection concept for neutrinoless double-beta decay searches. This concept is based on a Time Projection Chamber (TPC) filled with high-pressure gaseous xenon, and with separated-function capabilities for calorimetry and tracking.
This paper presents a review of the search for neutrinoless double beta decay of $^{76}$Ge with emphasis on the recent results of the GERDA experiment. It includes an appraisal of fifty years of research on this topic as well as an outlook.
The NEMO-3 experiment at the Modane Underground Laboratory has investigated the double-$beta$ decay of $^{48}{rm Ca}$. Using $5.25$ yr of data recorded with a $6.99,{rm g}$ sample of $^{48}{rm Ca}$, approximately $150$ double-$beta$ decay candidate e
The CUPID-Mo experiment is searching for neutrinoless double beta decay in $^{100}$Mo, evaluating the technology of cryogenic scintillating Li$_{2}^{100}$MoO$_4$ detectors for CUPID (CUORE Upgrade with Particle ID). CUPID-Mo detectors feature backgro