ترغب بنشر مسار تعليمي؟ اضغط هنا

Rusty old stars: a source of the missing interstellar iron?

29   0   0.0 ( 0 )
 نشر من قبل Iain McDonald
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Iron, the Universes most abundant refractory element, is highly depleted in both circumstellar and interstellar environments, meaning it exists in solid form. The nature of this solid is unknown. In this Letter, we provide evidence that metallic iron grains are present around oxygen-rich AGB stars, where it is observationally manifest as a featureless mid-infrared excess. This identification is made using Spitzer Space Telescope observations of evolved globular cluster stars, where iron dust production appears ubiquitous and in some cases can be modelled as the only observed dust product. In this context, FeO is examined as the likely carrier for the 20-micron feature observed in some of these stars. Metallic iron appears to be an important part of the dust condensation sequence at low metallicity, and subsequently plays an influential role in the interstellar medium. We explore the stellar metallicities and luminosities at which iron formation is observed, and how the presence of iron affects the outflow and its chemistry. The conditions under which iron can provide sufficient opacity to drive a wind remain unclear.

قيم البحث

اقرأ أيضاً

High-resolution spectroscopic studies of solar-type stars have revealed higher iron abundances derived from singly ionized species compared to neutral, violating the ionization equilibrium under the assumption of local thermodynamic equilibrium. In t his work, we investigate the overabundances of FeII lines reported in our previous work for a sample of 451 solar-type HARPS stars in the solar neighborhood. The spectroscopic surface gravities of this sample which emerge from the ionization balance, appear underestimated for the K-type stars. In order to understand this behavior, we search our FeII line list for unresolved blends and outliers. First, we use the VALD to identify possible unresolved blends around our lines and calculate which ones are strong enough to cause overestimations in the equivalent width measurements. Second, for our sample we use reference parameters (effective temperature and metallicity) and the Gaia DR2 parallaxes to derive surface gravities (trigonometric gravities) and calculate the FeI and FeII abundances from different line lists. We exclude the FeII lines which produce overabundances above 0.10 dex. The derived surface gravities from the clean line list are now in agreement with the trigonometric. Moreover, the difference between FeI and FeII abundance does not show now a correlation with the effective temperature. Finally, we show that the ionization balance of Ti can provide better estimates of surface gravities than iron. With this analysis, we provide a solution to the ionization balance problem observed in the atmospheres of cool dwarfs.
[Abridged] In recent years the view of Galactic globular clusters as simple stellar populations has changed dramatically, as it is now thought that basically all GCs host multiple stellar populations, each with its own chemical abundance pattern and colour-magnitude diagram sequence. Recent spectroscopic observations of asymptotic giant branch stars in the GC NGC6752 have disclosed a low [Na/Fe] abundance for the whole sample, suggesting that they are all first-generation stars, and that all second-generation stars fail to reach the AGB in this cluster. A scenario proposed to explain these observations invokes strong mass loss in second-generation horizontal branch stars possibly induced by the metal enhancement associated to radiative levitation. This enhanced mass loss would prevent second generation stars from reaching the AGB phase, thus explaining at the same time the low value of the ratio between HB and AGB stars (the R_2 parameter) observed in NGC6752. We have critically discussed this scenario, finding that the required mass-loss rates are of the order of 10^{-9} Mo/yr, significantly higher than current theoretical and empirical constraints. By making use of synthetic HB simulations, we demonstrate that our modelling predicts correctly the R_2 parameter for NGC6752, without the need to invoke very efficient mass loss during the core He-burning stage. Our simulations for NGC6752 HB predict however the presence of a significant fraction - at the level of about 50% - second generation stars along the cluster AGB. We conclude that there is no simple explanation for the lack of second generation stars in the spectroscopically surveyed sample, although the interplay between mass loss (with low rates) and radiative levitation may play a role in explaining this puzzle.
A sample of mostly old metal-rich dwarf and turn-off stars with high eccentricity and low maximum height above the Galactic plane has been identified. From their kinematics, it was suggested that the inner disk is their most probable birthplace. Thei r chemical imprints may therefore reveal important information about the formation and evolution of the still poorly understood inner disk. To probe the formation history of these stellar populations, a detailed analysis of a sample of very metal-rich stars is carried out. We derive the metallicities, abundances of alpha elements, ages, and Galactic orbits. The analysis of 71 metal-rich stars is based on optical high-resolution echelle spectra obtained with the FEROS spectrograph at the ESO 1.52-m Telescope at La Silla, Chile. The metallicities and abundances of C, O, Mg, Si, Ca, and Ti were derived based on LTE detailed analysis, employing the MARCS model atmospheres. We confirm the high metallicity of these stars reaching up to [Fe I/H]~0.58, and the sample of metal-rich dwarfs can be kinematically subclassified in samples of thick disk, thin disk, and intermediate stellar populations. All sample stars show solar alpha-Fe ratios, and most of them are old and still quite metal rich. The orbits suggest that the thin disk, thick disk and intermediate populations were formed at Galactocentric distances of ~8 kpc, ~6 kpc, and ~7 kpc, respectively. The mean maximum height of the thick disk subsample of Z_max~380 pc, is lower than for typical thick disk stars. A comparison of alpha-element abundances of the sample stars with bulge stars shows that the oxygen is compatible with a bulge or inner thick disk origin. Our results suggest that models of radial mixing and dynamical effects of the bar and bar/spiral arms might explain the presence of these old metal-rich dwarf stars in the solar neighbourhood.
67 - Michael De Becker 2013
Astrochemistry is a discipline that studies physico-chemical processes in astrophysical environments. Such environments are characterized by conditions that are substantially different from those existing in usual chemical laboratories. Models which aim to explain the formation of molecular species in interstellar environments must take into account various factors, including many that are directly, or indirectly related to the populations of massive stars in galaxies. The aim of this paper is to review the influence of massive stars, whatever their evolution stage, on the physico-chemical processes at work in interstellar environments. These influences include the ultraviolet radiation field, the production of high energy particles, the synthesis of radionuclides and the formation of shocks that permeate the interstellar medium.
Solar-type stars are born with relatively rapid rotation and strong magnetic fields. Through a process known as magnetic braking, the rotation slows over time as stellar winds gradually remove angular momentum from the system. The rate of angular mom entum loss depends sensitively on the magnetic morphology, with the dipole field exerting the largest torque on the star. Recent observations suggest that the efficiency of magnetic braking may decrease dramatically in stars near the middle of their main-sequence lifetimes. One hypothesis to explain this reduction in efficiency is a shift in magnetic morphology from predominantly larger to smaller spatial scales. We aim to test this hypothesis with spectropolarimetric measurements of two stars that sample chromospheric activity levels on opposite sides of the proposed magnetic transition. As predicted, the more active star (HD 100180) exhibits a significant circular polarization signature due to a non-axisymmetric large-scale magnetic field, while the less active star (HD 143761) shows no significant signal. We identify analogs of the two stars among a sample of well-characterized Kepler targets, and we predict that the asteroseismic age of HD 143761 from future TESS observations will substantially exceed the age expected from gyrochronology. We conclude that a shift in magnetic morphology likely contributes to the loss of magnetic braking in middle-aged stars, which appears to coincide with the shutdown of their global dynamos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا