ﻻ يوجد ملخص باللغة العربية
It is shown that the synchronization behavior of a system of chaotic maps subject to either an external forcing or a coupling function of their internal variables can be inferred from the behavior of a single element in the system, which can be seen as a single drive-response map. From the conditions for stable synchronization in this single driven-map model with minimal ingredients, we find minimal conditions for the emergence of complete and generalized chaos synchronization in both driven and autonomous associated systems. Our results show that the presence of a common drive or a coupling function for all times is not indispensable for reaching synchronization in a system of chaotic oscillators, nor is the simultaneous sharing of a field, either external or endogenous, by all the elements. In the case of an autonomous system, the coupling function does not need to depend on all the internal variables for achieving synchronization and its functional form is not crucial for generalized synchronization. What becomes essential for reaching synchronization in an extended system is the sharing of some minimal information by its elements, on the average, over long times, independently of the nature (external or internal) of its source.
We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in driven dynamical systems, to the context of autonomous spatiotemporal systems. It means a situation where the chaotic state variables in an autonomous system c
In this article we synchronize by active control method all 19 identical Sprott systems provided in paper [10]. Particularly, we find the corresponding active controllers as well as we perform (as an example) the numerical synchronization of two Sprott-A models.
Small networks of chaotic units which are coupled by their time-delayed variables, are investigated. In spite of the time delay, the units can synchronize isochronally, i.e. without time shift. Moreover, networks can not only synchronize completely,
The properties of functional relation between a non-invertible chaotic drive and a response map in the regime of generalized synchronization of chaos are studied. It is shown that despite a very fuzzy image of the relation between the current states
We analyze the origin and properties of the chaotic dynamics of two atomic ensembles in a driven-dissipative experimental setup, where they are collectively damped by a bad cavity mode and incoherently pumped by a Raman laser. Starting from the mean-