ﻻ يوجد ملخص باللغة العربية
In this article we synchronize by active control method all 19 identical Sprott systems provided in paper [10]. Particularly, we find the corresponding active controllers as well as we perform (as an example) the numerical synchronization of two Sprott-A models.
Recently, there has been provided two chaotic models based on the twist-deformation of classical Henon-Heiles system. First of them has been constructed on the well-known, canonical space-time noncommutativity, while the second one on the Lie-algebra
In this article we provide the noncommutative Sprott models. We demonstrate, that effectively, each of them is described by system of three complex, ordinary and nonlinear differential equations. Apart of that, we find for such modified models the co
We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in driven dynamical systems, to the context of autonomous spatiotemporal systems. It means a situation where the chaotic state variables in an autonomous system c
This paper provides a unified method for analyzing chaos synchronization of the generalized Lorenz systems. The considered synchronization scheme consists of identical master and slave generalized Lorenz systems coupled by linear state error variable
Chaos synchronization may arise in networks of nonlinear units with delayed couplings. We study complete and sublattice synchronization generated by resonance of two large time delays with a specific ratio. As it is known for single delay networks, t