ﻻ يوجد ملخص باللغة العربية
The paper contains a generalization of known properties of Chebyshev polynomials of the second kind in one variable to polynomials of $n$ variables based on the root lattices of compact simple Lie groups $G$ of any type and of rank $n$. The results, inspired by work of H. Li and Y. Xu where they derived cubature formulae from $A$-type lattices, yield Gaussian cubature formulae for each simple Lie group $G$ based on interpolation points that arise from regular elements of finite order in $G$. The polynomials arise from the irreducible characters of $G$ and the interpolation points as common zeros of certain finite subsets of these characters. The consistent use of Lie theoretical methods reveals the central ideas clearly and allows for a simple uniform development of the subject. Furthermore it points to genuine and perhaps far reaching Lie theoretical connections.
Recursive algebraic construction of two infinite families of polynomials in $n$ variables is proposed as a uniform method applicable to every semisimple Lie group of rank $n$. Its result recognizes Chebyshev polynomials of the first and second kind a
Polynomials in this paper are defined starting from a compact semisimple Lie group. A known classification of maximal, semisimple subgroups of simple Lie groups is used to select the cases to be considered here. A general method is presented and all
Lie groups with two different root lengths allow two mixed sign homomorphisms on their corresponding Weyl groups, which in turn give rise to two families of hybrid Weyl group orbit functions and characters. In this paper we extend the ideas leading t
Three types of numerical data are provided for simple Lie groups of any type and rank. This data is indispensable for Fourier-like expansions of multidimensional digital data into finite series of $C-$ or $S-$functions on the fundamental domain $F$ o
The discrete orthogonality of special function families, called $C$- and $S$-functions, which are derived from the characters of compact simple Lie groups, is described in Hrivnak and Patera (2009 J. Phys. A: Math. Theor. 42 385208). Here, the result