ترغب بنشر مسار تعليمي؟ اضغط هنا

Zeroes of Wronskians of Hermite polynomials and Young diagrams

45   0   0.0 ( 0 )
 نشر من قبل Alexander Veselov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For a certain class of partitions, a simple qualitative relation is observed between the shape of the Young diagram and the pattern of zeroes of the Wronskian of the corresponding Hermite polynomials. In the case of two-term Wronskian $W(H_n, H_{n+k})$ we give an explicit formula for the asymptotic shape of the zero set as $n rightarrow infty$. Some empirical asymptotic formulas are given for the zero sets of three and four-term Wronskians.

قيم البحث

اقرأ أيضاً

34 - Tomoki Ohsawa 2015
We investigate the relationship between the semiclassical wave packets of Hagedorn and the Hermite functions by establishing a relationship between their ladder operators. This Hagedorn--Hermite correspondence provides a unified view as well as simpl e proofs of some essential results on the Hagedorn wave packets. Particularly, we show that Hagedorns ladder operators are a natural set of ladder operators obtained from the position and momentum operators using the symplectic group. This construction reveals an algebraic structure of the Hagedorn wave packets, and explains the relative simplicity of Hagedorns parametrization compared to the rather intricate construction of the generalized squeezed states. We apply our formulation to show the existence of minimal uncertainty products for the Hagedorn wave packets, generalizing Hagedorns one-dimensional result to multi-dimensions. The Hagedorn--Hermite correspondence also leads to an alternative derivation of the generating function for the Hagedorn wave packets based on the generating function for the Hermite functions. This result, in turn, reveals the relationship between the Hagedorn polynomials and the Hermite polynomials.
226 - Antonio Moro 2013
A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest mod el that predicts the occurrence of a critical point associated with the gas-liquid phase transition. Nevertheless, below the critical temperature, theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts.
The symbolic method is used to get explicit formulae for the products or powers of Bessel functions and for the relevant integrals.
We compute Haar ensemble averages of ratios of random characteristic polynomials for the classical Lie groups K = O(N), SO(N), and USp(N). To that end, we start from the Clifford-Weyl algebera in its canonical realization on the complex of holomorphi c differential forms for a C-vector space V. From it we construct the Fock representation of an orthosymplectic Lie superalgebra osp associated to V. Particular attention is paid to defining Howes oscillator semigroup and the representation that partially exponentiates the Lie algebra representation of sp in osp. In the process, by pushing the semigroup representation to its boundary and arguing by continuity, we provide a construction of the Shale-Weil-Segal representation of the metaplectic group. To deal with a product of n ratios of characteristic polynomials, we let V = C^n otimes C^N where C^N is equipped with its standard K-representation, and focus on the subspace of K-equivariant forms. By Howe duality, this is a highest-weight irreducible representation of the centralizer g of Lie(K) in osp. We identify the K-Haar expectation of n ratios with the character of this g-representation, which we show to be uniquely determined by analyticity, Weyl group invariance, certain weight constraints and a system of differential equations coming from the Laplace-Casimir invariants of g. We find an explicit solution to the problem posed by all these conditions. In this way we prove that the said Haar expectations are expressed by a Weyl-type character formula for all integers N ge 1. This completes earlier work by Conrey, Farmer, and Zirnbauer for the case of U(N).
83 - I. I. Guseinov 2012
The new complete orthonormal sets of -Laguerre type polynomials (-LTP,) are suggested. Using Schrodinger equation for complete orthonormal sets of -exponential type orbitals (-ETO) introduced by the author, it is shown that the origin of these polyno mials is the centrally symmetric potential which contains the core attraction potential and the quantum frictional potential of the field produced by the particle itself. The quantum frictional forces are the analog of radiation damping or frictional forces suggested by Lorentz in classical electrodynamics. The new -LTP are complete without the inclusion of the continuum states of hydrogen like atoms. It is shown that the nonstandard and standard conventions of -LTP and their weight functions are the same. As an application, the sets of infinite expansion formulas in terms of -LTP and L-Generalized Laguerre polynomials (L-GLP) for atomic nuclear attraction integrals of Slater type orbitals (STO) and Coulomb-Yukawa like correlated interaction potentials (CIP) with integer and noninteger indices are obtained. The arrange and rearranged power series of a general power function are also investigated. The convergence of these series is tested by calculating concrete cases for arbitrary values of parameters of orbitals and power function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا