ترغب بنشر مسار تعليمي؟ اضغط هنا

New development in theory of Laguerre polynomials

132   0   0.0 ( 0 )
 نشر من قبل Israfil Guseinov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. I. Guseinov




اسأل ChatGPT حول البحث

The new complete orthonormal sets of -Laguerre type polynomials (-LTP,) are suggested. Using Schrodinger equation for complete orthonormal sets of -exponential type orbitals (-ETO) introduced by the author, it is shown that the origin of these polynomials is the centrally symmetric potential which contains the core attraction potential and the quantum frictional potential of the field produced by the particle itself. The quantum frictional forces are the analog of radiation damping or frictional forces suggested by Lorentz in classical electrodynamics. The new -LTP are complete without the inclusion of the continuum states of hydrogen like atoms. It is shown that the nonstandard and standard conventions of -LTP and their weight functions are the same. As an application, the sets of infinite expansion formulas in terms of -LTP and L-Generalized Laguerre polynomials (L-GLP) for atomic nuclear attraction integrals of Slater type orbitals (STO) and Coulomb-Yukawa like correlated interaction potentials (CIP) with integer and noninteger indices are obtained. The arrange and rearranged power series of a general power function are also investigated. The convergence of these series is tested by calculating concrete cases for arbitrary values of parameters of orbitals and power function.



قيم البحث

اقرأ أيضاً

We present a number of identities involving standard and associated Laguerre polynomials. They include double-, and triple-lacunary, ordinary and exponential generating functions of certain classes of Laguerre polynomials.
Symbolic methods of umbral nature play an important and increasing role in the theory of special functions and in related fields like combinatorics. We discuss an application of these methods to the theory of lacunary generating functions for the Lag uerre polynomials for which we give a number of new closed form expressions. We present furthermore the different possibilities offered by the method we have developed, with particular emphasis on their link to a new family of special functions and with previous formulations, associated with the theory of quasi monomials.
261 - A. E. McCoy , M. A. Caprio 2016
The Laguerre functions constitute one of the fundamental basis sets for calculations in atomic and molecular electron-structure theory, with applications in hadronic and nuclear theory as well. While similar in form to the Coulomb bound-state eigenfu nctions (from the Schroedinger eigenproblem) or the Coulomb-Sturmian functions (from a related Sturm-Liouville problem), the Laguerre functions, unlike these former functions, constitute a complete, discrete, orthonormal set for square-integrable functions in three dimensions. We construct the SU(1,1)xSO(3) dynamical algebra for the Laguerre functions and apply the ideas of factorization (or supersymmetric quantum mechanics) to derive shift operators for these functions. We use the resulting algebraic framework to derive analytic expressions for matrix elements of several basic radial operators (involving powers of the radial coordinate and radial derivative) in the Laguerre function basis. We illustrate how matrix elements for more general spherical tensor operators in three dimensional space, such as the gradient, may then be constructed from these radial matrix elements.
Three-center nuclear attraction integrals with Slater type orbitals (STOs) appearing in the Hartree-Fock-Roothaan (HFR) equations for molecules are evaluated using one-range addition theorems of STOs obtained from the use of complete orthonormal sets of -exponential type orbitals (-ETOs), where . These integrals are investigated for the determination of the best with respect to the convergence and accuracy of series expansion relations. It is shown that the best values are obtained for . The convergence of three-center nuclear attraction integrals with respect to the indices for is presented. The final results are expressed through the overlap integrals of STOs containing . The hermitian properties of three-center nuclear attraction integrals are also investigated. The algorithm described in this work is valid for the arbitrary values of, and quantum numbers, screening constants and location of orbitals. The convergence and accuracy of series are tested by calculating concrete cases. It should be noted that the theory of three-center nuclear attraction integrals presented in this work is the extension of method described in our previous paper for to the case of (I.I. Guseinov, N. Seckin Gorgun and N. Zaim, Chin. Phys. B 19 (2010) 043101-1-043101-5).
We apply the method of skew-orthogonal polynomials (SOP) in the complex plane to asymmetric random matrices with real elements, belonging to two different classes. Explicit integral representations valid for arbitrary weight functions are derived for the SOP and for their Cauchy transforms, given as expectation values of traces and determinants or their inverses, respectively. Our proof uses the fact that the joint probability distribution function for all combinations of real eigenvalues and complex conjugate eigenvalue pairs can be written as a product. Examples for the SOP are given in terms of Laguerre polynomials for the chiral ensemble (also called the non-Hermitian real Wishart-Laguerre ensemble), both without and with the insertion of characteristic polynomials. Such characteristic polynomials play the role of mass terms in applications to complex Dirac spectra in field theory. In addition, for the elliptic real Ginibre ensemble we recover the SOP of Forrester and Nagao in terms of Hermite polynomials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا