ترغب بنشر مسار تعليمي؟ اضغط هنا

First detection of the Methylidyne cation (CH+) fundamental rotational line with the Herschel/SPIRE FTS

275   0   0.0 ( 0 )
 نشر من قبل David Naylor
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. To follow the species chemistry arising in diverse sources of the Galaxy with Herschel. Methods. SPIRE FTS sparse sampled maps of the Orion bar & compact HII regions G29.96-0.02 and G32.80+0.19 have been analyzed. Results. Beyond the wealth of atomic and molecular lines detected in the high-resolution spectra obtained with the FTS of SPIRE in the Orion Bar, one emission line is found to lie at the position of the fundamental rotational transition of CH+ as measured precisely in the laboratory (Pearson & Drouion 2006). This coincidence suggests that it is the first detection of the fundamental rotational transition of CH+. This claim is strengthened by the observation of the lambda doublet transitions arising from its relative, CH, which are also observed in the same spectrum. The broad spectral coverage of the SPIRE FTS allows for the simultaneous measurement of these closely related chemically species, under the same observing conditions. The importance of these lines are discussed and a comparison with results obtained from models of the Photon Dominated Region (PDR) of Orion are presented. The CH+ line also appears in absorption in the spectra of the two galactic compact HII regions G29.96-0.02 and G32.80+0.19, which is likely due to the presence of CH+ in the the Cold Neutral Medium of the galactic plane. These detections will shed light on the formation processes and on the existence of CH+, which are still outstanding questions in astrophysics.

قيم البحث

اقرأ أيضاً

Emission from the Herschel telescope is the dominant source of radiation for the majority of SPIRE Fourier transform spectrometer (FTS) observations, despite the exceptionally low emissivity of the primary and secondary mirrors. Accurate modelling an d removal of the telescope contribution is, therefore, an important and challenging aspect of FTS calibration and data reduction pipeline. A dust-contaminated telescope model with time invariant mirror emissivity was adopted before the Herschel launch. However, measured FTS spectra show a clear evolution of the telescope contribution over the mission and strong need for a correction to the standard telescope model in order to reduce residual background (of up to 7 Jy) in the final data products. Systematic changes in observations of dark sky, taken over the course of the mission, provide a measure of the evolution between observed telescope emission and the telescope model. These dark sky observations have been used to derive a time dependent correction to the telescope emissivity that reduces the systematic error in the continuum of the final FTS spectra to ~0.35 Jy.
The SPIRE FTS Spectral Feature Finder (FF), developed within the Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer (FTS) instrument team, is an automated spectral feature fitting routine that attempts to find s ignificant features in SPIRE FTS spectra. The $^3$P$_1$ - $^3$P$_0$ and $^3$P$_2$ - $^3$P$_1$ neutral carbon fine structure lines are common features in carbon rich far-infrared astrophysical sources. These features can be difficult to detect using an automated feature detection routine due to their typically low amplitude and line blending. In this paper we describe and validate the FF sub-routine designed to detect the neutral carbon emission observed in SPIRE spectral data.
The SPIRE Fourier Transform Spectrometer on board the Herschel Space Observatory had two standard spectral resolution modes for science observations: high resolution (HR) and low resolution (LR), which could also be performed in sequence (H+LR). A co mparison of the HR and LR resolution spectra taken in this sequential mode, revealed a systematic discrepancy in the continuum level. Analysing the data at different stages during standard pipeline processing, demonstrates the telescope and instrument emission affect HR and H+LR observations in a systematically different way. The origin of this difference is found to lie in the variation of both the telescope and instrument response functions, while it is triggered by fast variation of the instrument temperatures. As it is not possible to trace the evolution of the response functions through auxiliary housekeeping parameters, the calibration cannot be corrected analytically. Therefore an empirical correction for LR spectra has been developed, which removes the systematic noise introduced by the variation of the response functions.
We present a catalog of all CO (J=4-3 through J=13-12)), [CI], [NII] lines available from extragalactic spectra from the Herschel SPIRE Fourier Transform Spectrometer (FTS) archive combined with observations of the low-J CO lines from the literature and from the Arizona Radio Observatory. This work examines the relationships between LFIR, LCO, and LCO/LCO(1-0). We also present a new method for estimating probability distribution functions (PDFs) from marginal signal-to-noise ratio Herschel} FTS spectra, which takes into account the instrumental ringing and the resulting highly correlated nature of the spectra. The slopes of log(LFIR) vs. log(LCO) are linear for all mid- to high-J CO lines and slightly sublinear if restricted to (U)LIRGs. The mid- to high-J CO luminosity relative to CO J=1-0 increases with increasing LFIR, indicating higher excitement of the molecular gas, though these ratios do not exceed ~ 180. For a given bin in LFIR, the luminosities relative to CO J=1-0 remain relatively flat from J=6-5 through J=13-12, across three orders of magnitude of LFIR. A single component theoretical photon-dominated region (PDR) model cannot match these flat SLED shapes, though combinations of PDR models with mechanical heating added qualitatively match the shapes, indicating the need for further comprehensive modeling of the excitation processes of warm molecular gas in nearby galaxies.
62 - Jer^ome Pety 2012
We present the first detection of the l-C3H+ hydrocarbon in the interstellar medium. The Horsehead WHISPER project, a millimeter unbiased line survey at two positions, namely the photo-dissociation region (PDR) and the nearby shielded core, revealed a consistent set of eight unidentified lines toward the PDR position. Six of them are detected with a signal-to-noise ratio from 6 to 19, while the two last ones are tentatively detected. Mostly noise appears at the same frequency toward the dense core, located less than 40 away. We simultaneously fit 1) the rotational and centrifugal distortion constants of a linear rotor, and 2) the Gaussian line shapes located at the eight predicted frequencies. The observed lines can be accurately fitted with a linear rotor model, implying a 1Sigma ground electronic state. The deduced rotational constant value is Be= 11244.9512 +/- 0.0015 MHz, close to that of l-C3H. We thus associate the lines to the l-C3H+ hydrocarbon cation, which enables us to constrain the chemistry of small hydrocarbons. A rotational diagram is then used to infer the excitation temperature and the column density. We finally compare the abundance to the results of the Meudon PDR photochemical model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا