ﻻ يوجد ملخص باللغة العربية
Aims. To follow the species chemistry arising in diverse sources of the Galaxy with Herschel. Methods. SPIRE FTS sparse sampled maps of the Orion bar & compact HII regions G29.96-0.02 and G32.80+0.19 have been analyzed. Results. Beyond the wealth of atomic and molecular lines detected in the high-resolution spectra obtained with the FTS of SPIRE in the Orion Bar, one emission line is found to lie at the position of the fundamental rotational transition of CH+ as measured precisely in the laboratory (Pearson & Drouion 2006). This coincidence suggests that it is the first detection of the fundamental rotational transition of CH+. This claim is strengthened by the observation of the lambda doublet transitions arising from its relative, CH, which are also observed in the same spectrum. The broad spectral coverage of the SPIRE FTS allows for the simultaneous measurement of these closely related chemically species, under the same observing conditions. The importance of these lines are discussed and a comparison with results obtained from models of the Photon Dominated Region (PDR) of Orion are presented. The CH+ line also appears in absorption in the spectra of the two galactic compact HII regions G29.96-0.02 and G32.80+0.19, which is likely due to the presence of CH+ in the the Cold Neutral Medium of the galactic plane. These detections will shed light on the formation processes and on the existence of CH+, which are still outstanding questions in astrophysics.
Emission from the Herschel telescope is the dominant source of radiation for the majority of SPIRE Fourier transform spectrometer (FTS) observations, despite the exceptionally low emissivity of the primary and secondary mirrors. Accurate modelling an
The SPIRE FTS Spectral Feature Finder (FF), developed within the Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer (FTS) instrument team, is an automated spectral feature fitting routine that attempts to find s
The SPIRE Fourier Transform Spectrometer on board the Herschel Space Observatory had two standard spectral resolution modes for science observations: high resolution (HR) and low resolution (LR), which could also be performed in sequence (H+LR). A co
We present a catalog of all CO (J=4-3 through J=13-12)), [CI], [NII] lines available from extragalactic spectra from the Herschel SPIRE Fourier Transform Spectrometer (FTS) archive combined with observations of the low-J CO lines from the literature
We present the first detection of the l-C3H+ hydrocarbon in the interstellar medium. The Horsehead WHISPER project, a millimeter unbiased line survey at two positions, namely the photo-dissociation region (PDR) and the nearby shielded core, revealed