ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Nearby CR Accelerators and ISM Turbulence with Milagro Hot Spots

80   0   0.0 ( 0 )
 نشر من قبل Mikhail Malkov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Both the acceleration of cosmic rays (CR) in supernova remnant shocks and their subsequent propagation through the random magnetic field of the Galaxy deem to result in an almost isotropic CR spectrum. Yet the MILAGRO TeV observatory discovered a sharp ($sim10^{circ})$ arrival anisotropy of CR nuclei. We suggest a mechanism for producing a weak and narrow CR beam which operates en route to the observer. The key assumption is that CRs are scattered by a strongly anisotropic Alfven wave spectrum formed by the turbulent cascade across the local field direction. The strongest pitch-angle scattering occurs for particles moving almost precisely along the field line. Partly because this direction is also the direction of minimum of the large scale CR angular distribution, the enhanced scattering results in a weak but narrow particle excess. The width, the fractional excess and the maximum momentum of the beam are calculated from a systematic transport theory depending on a single scale $l$ which can be associated with the longest Alfven wave, efficiently scattering the beam. The best match to all the three characteristics of the beam is achieved at $lsim1$pc. The distance to a possible source of the beam is estimated to be within a few 100pc. Possible approaches to determination of the scale $l$ from the characteristics of the source are discussed. Alternative scenarios of drawing the beam from the galactic CR background are considered. The beam related large scale anisotropic CR component is found to be energy independent which is also consistent with the observations.



قيم البحث

اقرأ أيضاً

The Milagro experiment has announced the discovery of an excess flux of TeV cosmic rays from the general direction of the heliotail, also close to the Galactic anticenter. We investigate the hypothesis that the excess cosmic rays were produced in the SN explosion that gave birth to the Geminga pulsar. The assumptions underlying our proposed scenario are that the Geminga supernova occurred about 3.4 10^5 years ago (as indicated by the spin down timescale), that a burst of cosmic rays was injected with total energy 10^49 erg (i.e., about 1% of a typical SN output), and that the Geminga pulsar was born with a positive radial velocity of 100--200 km s^-1. We find that our hypothesis is consistent with the available information. In a first variant (likely oversimplified), the cosmic rays have diffused according to the Bohm prescription (i.e., with a diffusion coefficient on the order of c times r_L, with c the speed of light and r_L the Larmor radius). An alternative scheme assumes that diffusion only occurred initially, and the final propagation to the Sun was a free streaming in a diverging magnetic field. If the observed cosmic ray excess does indeed arise from the Geminga SN explosion, the long--sought smoking gun connecting cosmic rays with supernovae would finally be at hand. It could be said that, while looking for the smoking gun, we were hit by the bullets themselves.
3D maps of the ISM can be used to locate not only IS clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae. We compare our 3D maps of the IS dust to the ROSAT diffuse X-ray background maps. In the Plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the 0.25 keV background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust to gas ratio and homogeneous 1MK hot gas filling the cavities, we modeled in a simple way the 0.25 keV surface brightness along the Galactic plane as seen from the Sun, taking into account the absorption by the mapped clouds. The data-model comparison favors the existence of hot gas in the Local Bubble (LB). The average mean pressure in the local cavities is found to be on the order of about 10,000 cm-3K, in agreement with previous studies. The model overestimates the emission from the huge cavities in the 3rd quadrant. Using CaII absorption data, we show that the dust to CaII ratio is very small in this region, implying the presence of a large quantity of lower temperature (non-X-ray emitting) ionized gas, explaining at least part of the discrepancy. In the meridian plane, the two main brightness enhancements coincide well with the chimneys connecting the LB to the halo. No nearby cavity is found towards the bright North Polar Spur (NPS) at high latitude. We searched in the maps for the source regions of the 0.75 keV enhancements in the 4th and 1st quadrants. Tunnels and cavities are found to coincide with the main bright areas, however no tunnel nor cavity is found to match the low-latitude, brightest part of the NPS. In addition, the comparison between the maps and published spectra do not favor the nearby cavities located within about 200pc as potential source regions for the NPS.
71 - L. A. Balona 2020
About 22000 Kepler stars and nearly 60000 TESS stars from sectors 1-24 have been classified according to variability type. A large proportion of stars of all spectral types appear to have periods consistent with the expected rotation periods. A previ ous analysis of A and late B stars strongly suggests that these stars are indeed rotational variables. In this paper we have accumulated sufficient data to show that rotational modulation is present even among the early B stars. A search for flares in TESS A and B stars resulted in the detection of 110 flares in 68 stars. The flare energies exceed those of typical K and M dwarfs by at least two orders of magnitude. These results, together with severe difficulties of current models to explain stellar pulsations in A and B stars, suggest a need for revision of our current understanding of the outer layers of stars with radiative envelopes.
Hot luminous stars show a variety of phenomena in their photospheres and winds which still lack clear physical explanation. Among these phenomena are photospheric turbulence, line profile variability (LPV), non-thermal emission, non-radial pulsations , discrete absorption components (DACs) and wind clumping. Cantiello et al. (2009) argued that a convection zone close to the stellar surface could be responsible for some of these phenomena. This convective zone is caused by a peak in the opacity associated with iron-group elements and is referred to as the iron convection zone (FeCZ). Assuming dynamo action producing magnetic fields at equipartition in the FeCZ, we investigate the occurrence of subsurface magnetism in OB stars. Then we study the surface emergence of these magnetic fields and discuss possible observational signatures of magnetic spots. Simple estimates are made using the subsurface properties of massive stars, as calculated in 1D stellar evolution models. We find that magnetic fields of sufficient amplitude to affect the wind could emerge at the surface via magnetic buoyancy. While at this stage it is difficult to predict the geometry of these features, we show that magnetic spots of size comparable to the local pressure scale height can manifest themselves as hot, bright spots. Localized magnetic fields could be widespread in those early type stars that have subsurface convection. This type of surface magnetism could be responsible for photometric variability and play a role in X-ray emission and wind clumping.
Most of the baryonic mass in the circumgalactic medium (CGM) of a spiral galaxy is believed to be warm-hot, with temperature around $10^6$K. The narrow OVI absorption lines probe a somewhat cooler component at $log rm T(K)= 5.5$, but broad OVI absorb ers have the potential to probe the hotter CGM. Here we present 376 ks Chandra LETG observations of a carefully selected galaxy in which the presence of broad OVI together with the non-detection of Lya was indicative of warm-hot gas. The strongest line expected to be present at $approx 10^6$K is OVII $lambda 21.602$. There is a hint of an absorption line at the redshifted wavelength, but the line is not detected with better than $2sigma$ significance. A physical model, taking into account strengths of several other lines, provides better constraints. Our best-fit absorber model has $log rm T(K) =6.3pm 0.2$ and $log rm N_{H} (cm^{-2})=20.7^{+0.3}_{-0.5}$. These parameters are consistent with the warm-hot plasma model based on UV observations; other OVI models of cooler gas phases are ruled out at better than $99$% confidence. Thus we have suggestive, but not conclusive evidence for the broad OVI absorber probing the warm-hot gas from the shallow observations of this pilot program. About 800ks of XMM-Newton observations will detect the expected absorption lines of OVII and OVIII unequivocally. Future missions like XRISM, Arcus and Athena will revolutionize the CGM science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا