ترغب بنشر مسار تعليمي؟ اضغط هنا

Violent Intranight Optical Variability of a Radio-Loud Narrow-Line Seyfert 1 Galaxy: SDSS J094857.3+002225

126   0   0.0 ( 0 )
 نشر من قبل Hao Liu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SDSS J094857.3+002225 is a very radio-loud narrow-line Seyfert 1 (NLS1) galaxy. Here, we report our discovery of the intranight optical variability (INOV) of this galaxy through the optical monitoring in the B and R bands that covered seven nights in 2009. Violent rapid variability in the optical bands was identified in this RL-NLS1 for the first time, and the amplitudes of the INOV reaches 0.5 mag in both the B and R bands on the timescale of several hours. The detection of the INOV provides a piece of strong evidence supporting the fact that the object carries a relativistic jet with a small viewing angle, which confirms the conclusion drawn from the previous multi-wavelength studies.



قيم البحث

اقرأ أيضاً

We observed the narrow-line quasar SDSS J094857.3+002225, which has the highest known radio loudness for a narrow-line Seyfert~1 galaxy (NLS1), at 1.7--15.4 GHz with the Very Long Baseline Array (VLBA). This is the first very-long-baseline interferom etry (VLBI) investigation for a radio-loud NLS1. We independently found very high brightness temperatures from (1) its compactness in a VLBA image and (2) flux variation among the VLBA observation, our other observations with the VLBA, and the Very Large Array (VLA). A Doppler factor larger than 2.7--5.5 was required to meet an intrinsic limit of brightness temperature in the rest frame. This is evidence for highly relativistic nonthermal jets in an NLS1. We suggest that the Doppler factor is one of the most crucial parameters determining the radio loudness of NLS1s. The accretion disk of SDSS J094857.3+002225 is probably in the very high state, rather than the high/soft state, by analogy with X-ray binaries with strong radio outbursts and superluminal jets such as GRS 1915+105.
We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey (KISS). The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observati ons suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z=0.840, however with unusually strong narrow emission lines. The estimated black hole mass of ~ 10^7 Msun implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~ 4 x 10^2 - 3 x 10^3, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and gamma-ray loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.
81 - K. E. Gabanyi , A. Moor , S. Frey 2018
Most of the radio-loud narrow-line Seyfert 1 (NLS1) galaxies resemble compact steep-spectrum sources. However, the extremely radio-loud ones show blazar-like characteristics, like flat radio spectra, compact radio cores, substantial variability and h igh brightness temperatures. These objects are thought to be similar to blazars as they possess relativistic jets seen at small angle to the line of sight. This claim has been further supported by the Fermi satellite discovery of gamma-ray emission from a handful of these sources. Using the Wide-Field Infrared Survey Explorer (WISE) data, we analyzed the mid-infrared variability characteristics of $42$ radio-loud NLS1 at $3.4$ and $4.6,mu$m. We found that $27$ out of the studied $42$ sources showed variability in at least one of the two infrared bands. In some cases, significant changes in the infrared colors can alter the location of the source in the WISE color-color diagram which might lead to different classification. More than $60$% of the variable sources also showed variability within a $1-1.5$ day interval. Such short time scales argue for a compact emission region like those associated with the jets. This connection is further strengthened by the fact that the brightest $gamma$-ray emitters of the sample ($6$ sources), all showed short time scale infrared variability.
The recent detection of gamma-ray emission from four radio-loud narrow-line Seyfert 1 galaxies suggests that the engine driving the AGN activity of these objects share some similarities with that of blazars, namely the presence of a gamma-ray emittin g, variable, jet of plasma closely aligned to the line of sight. In this work we analyze the gamma-ray light curves of the four radio-loud narrow-line Seyfert 1 galaxies for which high-energy gamma-ray emission has been discovered by Fermi/LAT, in order to study their variability. We find significant flux variability in all the sources. This allows us to exclude a starburst origin of the gamma-ray photons and confirms the presence of a relativistic jet. Furthermore we estimate the minimum e-folding variability timescale (3 - 30 days) and infer an upper limit for the size of the emitting region (0.2 - 2 pc, assuming a relativistic Doppler factor delta=10 and a jet aperture of theta=0.1 rad).
As hybrids of narrow-line Seyfert 1 (NLS1) galaxies and blazars, {gamma}-ray emitting NLS1s are important probes of jet physics in the high Eddington-ratio regime. Only very few of them are known to date; the majority of them below redshift z = 0.5. Here we present the identification of the {gamma}-ray emitting AGN TXS 0943+105 (SDSS J094635.06+101706.1) as a high-redshift NLS1 galaxy. It turns out to be one of the radio-loudest NLS1s known, highly variable at all wavelengths, and shows widely extended radio emission at a (projected) > 100 kpc scale. It is a known strong {gamma}-ray emitter with a luminous flare reported previously. At redshift z=1.004, this is the most distant {gamma}-NLS1 known to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا