ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependence of the optical/UV variability on the emission line properties and Eddington ratio in active galactic nuclei

149   0   0.0 ( 0 )
 نشر من قبل Yanli Ai
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dependence of the long-term optical/UV variability on the spectral and the fundamental physical parameters for radio-quiet active galactic nuclei (AGNs) is investigated. The multi-epoch repeated photometric scanning data in the Stripe-82 region of the Sloan Digital Sky Survey (SDSS) are exploited for two comparative AGN samples (mostly quasars) selected therein, a broad-line Seyfert,1 (BLS1) type sample and a narrow-line Seyfert,1 (NLS1) type AGN sample within redshifts 0.3--0.8. Their spectral parameters are derived from the SDSS spectroscopic data. It is found that on rest-frame timescales of several years the NLS1-type AGNs show systematically smaller variability compared to the BLS1-type. In fact, the variability amplitude is found to correlate, though only moderately, with the Eigenvector,1 parameters, i.e., the smaller the hb linewidth, the weaker the [O,III] and the stronger the feii emission, the smaller the variability amplitude is. Moreover, an interesting inverse correlation is found between the variability and the Eddington ratio, which is perhaps more fundamental. The previously known dependence of the variability on luminosity is not significant, and that on black hole mass---as claimed in recent papers and also present in our data---fades out when controlling for the Eddington ratio in the correlation analysis, though these may be partly due to the limited ranges of luminosity and black hole mass of our samples. Our result strongly supports that an accretion disk is likely to play a major role in producing the opitcal/UV variability.

قيم البحث

اقرأ أيضاً

The observed relation between the X-ray radiation from AGNs, originating in the corona, and the optical/UV radiation from the disk is usually described by the anticorrelation between the UV to X-ray slope alpha_ox and the UV luminosity. Many factors can affect this relation, including: enhanced X-ray emission associated with the jets of radio-loud AGNs; X-ray absorption associated with the UV Broad Absorption Line (BAL) outflows; other X-ray absorption not associated with BALs; intrinsic X-ray weakness; UV and X-ray variability, and non-simultaneity of UV and X-ray observations. The separation of these effects provides information about the intrinsic alpha_ox-L_UV relation and its dispersion, constraining models of disk-corona coupling. We extract simultaneous data from the second XMM-Newton serendipitous source catalogue and the XMM-Newton Optical Monitor Serendipitous UV Source Survey Catalog, and derive the single-epoch alpha_ox indices. We use ensemble structure functions to analyse multi-epoch data. We confirm the anticorrelation of alpha_ox with L_UV, and do not find any evidence of a dependence of alpha_ox on z. The dispersion in our simultaneous data (0.12) is not significantly smaller than in previous non-simultaneous studies, suggesting that artificial alpha_ox variability introduced by non-simultaneity is not the main cause of dispersion. Intrinsic alpha_ox variability, i.e., the true variability of the X-ray to optical ratio, is instead important, and accounts for ~30% of the total variance, or more. Inter-source dispersion, due to intrinsic differences in the average alpha_ox values from source to source, is also important. The dispersion introduced by variability is mostly caused by the long timescale variations, which are expected to be driven by the optical variations.
We have investigated the ensemble regularities of the equivalent widths (EWs) of MgII 2800 emission line of active galactic nuclei (AGNs), using a uniformly selected sample of 2092 Seyfert 1 galaxies and quasars at 0.45 <= z <= 0.8 in the spectroscop ic data set of Sloan Digital Sky Survey Fourth Data Release. We find a strong correlation between the EW of MgII and the AGN Eddington ratio (L/L_Edd): EW(MgII) propto (L/L_Edd)^{-0.4}. Furthermore, for AGNs with the same L/L_Edd, their EWs of MgII show no correlation with luminosity, black hole mass or line width, and the MgII line luminosity is proportional to continuum luminosity, as expected by photoionization theory. Our result shows that MgII EW is not dependent on luminosity, but is solely governed by L/L_Edd.
Variability, both in X-ray and optical/UV, affects the well-known anti-correlation between the $alpha_{ox}$ spectral index and the UV luminosity of active galactic nuclei, contributing part of the dispersion around the average correlation (intra-sour ce dispersion), in addition to the differences among the time-average $alpha_{ox}$ values from source to source (inter-source dispersion). We want to evaluate the intrinsic $alpha_{ox}$ variations in individual objects, and their effect on the dispersion of the $alpha_{ox}-L_{UV}$ anti-correlation. We use simultaneous UV/X-ray data from Swift observations of a low-redshift sample, to derive the epoch-dependent $alpha_{ox}(t)$ indices. We correct for the host galaxy contribution by a spectral fit of the optical/UV data. We compute ensemble structure functions to analyse variability of multi-epoch data. We find a strong intrinsic $alpha_{ox}$ variability, which makes an important contribution ($sim40%$ of the total variance) to the dispersion of the $alpha_{ox}-L_{UV}$ anti-correlation (intra-source dispersion). The strong X-ray variability and weaker UV variability of this sample are comparable to other samples of low-z AGNs, and are neither due to the high fraction of strongly variable NLS1s, nor to dilution of the optical variability by the host galaxies. Dilution affects instead the slope of the anti-correlation, which steepens, once corrected, becoming similar to higher luminosity sources. The structure function of $alpha_{ox}$ increases with the time lag up to $sim$1 month. This indicates the important contribution of the intermediate-long timescale variations, possibly generated in the outer parts of the accretion disk.
131 - C. Ricci , L. C. Ho , A. C. Fabian 2018
The bulk of the X-ray emission in Active Galactic Nuclei (AGN) is produced very close to the accreting supermassive black hole (SMBH), in a corona of hot electrons which up scatters optical and ultraviolet photons from the accretion flow. The cutoff energy ($E_{rm C}$) of the primary X-ray continuum emission carries important information on the physical characteristics of the X-ray emitting plasma, but little is currently known about its potential relation with the properties of accreting SMBHs. Using the largest broad-band (0.3-150 keV) X-ray spectroscopic study available to date, we investigate how the corona is related to the AGN luminosity, black hole mass and Eddington ratio ($lambda_{rm Edd}$). Assuming a slab corona the median values of the temperature and optical depth of the Comptonizing plasma are $kT_{rm e}=105 pm 18$ keV and $tau=0.25pm0.06$, respectively. When we properly account for the large number of $E_{rm C}$ lower limits, we find a statistically significant dependence of the cutoff energy on the Eddington ratio. In particular, objects with $ lambda_{rm Edd}>0.1$ have a significantly lower median cutoff energy ($E_{rm C}=160pm41$ keV) than those with $lambda_{rm Edd}leq 0.1$ ($E_{rm C}=370pm51$ keV). This is consistent with the idea that radiatively compact coronae are also cooler, because they tend to avoid the region in the temperature-compactness parameter space where runaway pair production would dominate. We show that this behaviour could also straightforwardly explain the suggested positive correlation between the photon index ($Gamma$) and the Eddington ratio, being able to reproduce the observed slope of the $Gamma-lambda_{rm Edd}$ trend.
We present the observed-frame optical, near- and mid-infrared properties of X-ray selected AGN in the Lockman Hole. Using a likelihood ratio method on optical, near-infrared or mid-infrared catalogues, we assigned counterparts to 401 out of the 409 X -ray sources of the XMM-Newton catalogue. Accurate photometry was collected for all the sources from U to 24um. We used X-ray and optical criteria to remove any normal galaxies, galactic stars, or X-ray clusters among them and studied the multi-wavelength properties of the remaining 377 AGN. We used a mid-IR colour-colour selection to understand the AGN contribution to the optical and infrared emission. Using this selection, we identified different behaviours of AGN-dominated and host-dominated sources in X-ray-optical-infrared colour-colour diagrams. More specifically, the AGN dominated sources show a clear trend in the f_x/f_R vs. R-K and f_24um/f_R vs. R-K diagrams, while the hosts follow the behaviour of non X-ray detected galaxies. In the optical-near-infrared colour-magnitude diagram we see that the known trend of redder objects being more obscured in X-rays is stronger for AGN-dominated than for host-dominated systems. This is an indication that the trend is more related to the AGN contaminating the overall colours than any evolutionary effects. Finally, we find that a significant fraction (~30%) of the reddest AGN are not obscured in X-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا