ترغب بنشر مسار تعليمي؟ اضغط هنا

The Algol triple system spatially resolved at optical wavelengths

212   0   0.0 ( 0 )
 نشر من قبل Robert T. Zavala Jr.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. T. Zavala




اسأل ChatGPT حول البحث

Interacting binaries typically have separations in the milli-arcsecond regime and hence it has been challenging to resolve them at any wavelength. However, recent advances in optical interferometry have improved our ability to discern the components in these systems and have now enabled the direct determination of physical parameters. We used the Navy Prototype Optical Interferometer to produce for the first time images resolving all three components in the well-known Algol triple system. Specifically, we have separated the tertiary component from the binary and simultaneously resolved the eclipsing binary pair, which represents the nearest and brightest eclipsing binary in the sky. We present revised orbital elements for the triple system, and we have rectified the 180-degree ambiguity in the position angle of Algol C. Our directly determined magnitude differences and masses for this triple star system are consistent with earlier light curve modeling results.



قيم البحث

اقرأ أيضاً

Algol (Beta Per) is an extensively studied hierarchical triple system whose inner pair is a prototype semi-detached binary with mass transfer occurring from the sub-giant secondary to the main-sequence primary. We present here the results of our Algo l observations made between 2006 and 2010 at the CHARA interferometer with the Michigan Infrared Combiner in the H band. The use of four telescopes with long baselines allows us to achieve better than 0.5 mas resolution and to unambiguously resolve the three stars. The inner and outer orbital elements, as well as the angular sizes and mass ratios for the three components are determined independently from previous studies. We report a significantly improved orbit for the inner stellar pair with the consequence of a 15% change in the primary mass compared to previous studies. We also determine the mutual inclination of the orbits to be much closer to perpendicularity than previously established. State-of-the-art image reconstruction algorithms are used to image the full triple system. In particular an image sequence of 55 distinct phases of the inner pair orbit is reconstructed, clearly showing the Roche-lobe-filling secondary revolving around the primary, with several epochs corresponding to the primary and secondary eclipses.
We have used multi-epoch long-baseline radio interferometry to determine the proper motion and orbital elements of Algol and UX Arietis, two radio-bright, close binary stellar systems with distant tertiary components. For Algol, we refine the proper motion and outer orbit solutions, confirming the recent result of Zavala et al. (2010) that the inner orbit is retrograde. The radio centroid closely tracks the motion of the KIV secondary. In addition, the radio morphology varies from double-lobed at low flux level to crescent-shaped during active periods. These results are most easily interpreted as synchrotron emission from a large, co-rotating meridional loop centered on the K-star. If this is correct, it provides a radio-optical frame tie candidate with an uncertainty {pm}0.5 mas. For UX Arietis, we find a outer orbit solution that accounts for previous VLBI observations of an acceleration term in the proper motion fit. The outer orbit solution is also consistent with previously published radial velocity curves and speckle observations of a third body. The derived tertiary mass, 0.75 solar masses, is consistent with the K1 main-sequence star detected spectroscopically. The inner orbit solution favors radio emission from the active K0IV primary only. The radio morphology, consisting of a single, partially resolved emission region, may be associated with the persistent polar spot observed using Doppler imaging.
We report the discovery of J1953-1019, the first resolved triple white dwarf system. The triplet consists of an inner white dwarf binary and a wider companion. Using Gaia DR2 photometry and astrometry combined with our follow-up spectroscopy, we deri ve effective temperatures, surface gravities, masses and cooling ages of the three components. All three white dwarfs have pure-hydrogen (DA) atmospheres, masses of 0.60-0.63 Msun and cooling ages of 40-290 Myr. We adopt eight initial-to-final mass relations to estimate the main sequence progenitor masses (which we find to be similar for the three components, 1.6-2.6 Msun) and lifetimes. The differences between the derived cooling times and main sequence lifetimes agree for most of the adopted initial-to-final mass relations, hence the three white dwarfs in J1953-1019 are consistent with coeval evolution. Furthermore, we calculate the projected orbital separations of the inner white dwarf binary (303.25 +- 0.01 au) and of the centre of mass of the inner binary and the outer companion (6398.97 +- 0.09 au). From these values, and taking into account a wide range of possible configurations for the triplet to be currently dynamically stable, we analyse the future evolution of the system. We find that a collision between the two inner white dwarfs due to Lidov-Kozai oscillations is unlikely, though if it occurs it could result in a sub-Chandrasekhar Type Ia supernova explosion.
High-mass multiples might form via fragmentation of self-gravitational disks or alternative scenarios such as disk-assisted capture. However, only few observational constraints exist on the architecture and disk structure of high-mass protobinaries a nd their accretion properties. Here we report the discovery of a close ($57.9pm0.2$mas=170au) high-mass protobinary, IRAS17216-3801, where our VLTI/GRAVITY+AMBER near-infrared interferometry allows us to image the circumstellar disks around the individual components with 3 milliarcsecond resolution. We estimate the component masses to $sim20$ and $sim18 M_{odot}$ and find that the radial intensity profiles can be reproduced with an irradiated disk model, where the inner regions are excavated of dust, likely tracing the dust sublimation region in these disks. The circumstellar disks are strongly misaligned with respect to the binary separation vector, which indicates that the tidal forces did not have time to realign the disks, pointing towards a young dynamical age of the system. We constrain the distribution of the Br$gamma$ and CO-emitting gas using VLTI/GRAVITY spectro-interferometry and VLT/CRIRES spectro-astrometry and find that the secondary is accreting at a higher rate than the primary. VLT/NACO imaging shows $L$-band emission on 3-4 times larger scales than the binary separation, matching the expected dynamical truncation radius for the circumbinary disk. The IRAS17216-3801 system is $sim3times$ more massive and $sim5times$ more compact than other high-mass multiplies imaged at infrared wavelengths and the first high-mass protobinary system where circumstellar and circumbinary dust disks could be spatially resolved. This opens exciting new opportunities for studying star-disk interactions and the role of multiplicity in high-mass star formation.
Equal-mass stars in young open clusters and loose associations exhibit a wide spread of rotation periods, which likely originates from differences in the initial rotation periods and in the primordial disc lifetimes. We want to explore if the gravita tional effects by nearby companions may play an additional role in producing the observed rotation period spread. We measure the photometric rotation periods of components of multiple stellar systems and look for correlations of the period differences among the components to their reciprocal distances. In this paper, we analysed the triple system AU Mic + AT Mic A&B in the 25-Myr beta Pictoris Association. We have retrieved from the literature the rotation period of AU Mic (P = 4.85d) and measured from photometric archival data the rotation periods of both components of AT Mic (P = 1.19d and P = 0.78d) for the first time. Moreover, we detected a high rate of flare events from AT Mic. Whereas the distant component AU Mic has evolved rotationally as a single star, the A and B components of AT Mic, separated by about 27 AU, exhibit a rotation rate a factor 5 larger than AU Mic. Moreover, the A and B components, despite have about equal mass, show a significant difference (about 40%) between their rotation periods. A possible explanation is that the gravitational forces between the A and B components of AT Mic (that are a factor about 7.3 x 10^6 more intense than those between AU Mic and AT Mic) have enhanced the dispersal of the AT Mic primordial disc, shortening its lifetime and the disc-locking phase duration, making the component A and B of AT Mic to rotate faster than the more distant AU Mic. We suspect that a different level of magnetic activity between the A and B components of AT Mic may be the additional parameter responsible for the difference between their rotation periods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا