ﻻ يوجد ملخص باللغة العربية
The system under consideration is a multi-component gas of interacting para- and orthoexcitons confined in a three dimensional potential trap. We calculate the spatially resolved optical emission spectrum due to interband transitions involving weak direct and phonon mediated exciton-photon interactions. For each component, the occurrence of a Bose-Einstein condensate changes the spectrum in a characteristic way so that it directly reflects the constant chemical potential of the excitons and the renormalization of the quasiparticle excitation spectrum. Moreover, the interaction between the components leads, in dependence on temperature and particle number, to modifications of the spectra indicating phase separation of the subsystems. Typical examples of density profiles and luminescence spectra of ground-state para- and orthoexcitons in cuprous oxide are given.
We calculate the spatially resolved optical emission spectrum of a weakly interacting Bose gas of excitons confined in a three dimensional potential trap due to interband transitions involving weak direct and phonon mediated exciton-photon interactio
The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled se
We have observed Bose-Einstein condensation of an atomic gas in the (quasi-)uniform three-dimensional potential of an optical box trap. Condensation is seen in the bimodal momentum distribution and the anisotropic time-of-flight expansion of the cond
We model the dynamics of condensation in a bimodal trap, consisting of a large reservoir region, and a tight dimple whose depth can be controlled. Experimental investigations have found that such dimple traps provide an efficient means of achieving c
We present the first experimental realisation of Bose-Einstein condensation in a purely magnetic double-well potential. This has been realised by combining a static Ioffe-Pritchard trap with a time orbiting potential (TOP). The double trap can be rap