ﻻ يوجد ملخص باللغة العربية
We calculate the spatially resolved optical emission spectrum of a weakly interacting Bose gas of excitons confined in a three dimensional potential trap due to interband transitions involving weak direct and phonon mediated exciton-photon interactions. Applying the local density approximation, we show that for a non-condensed system the spatio-spectral lineshape of the direct process reflects directly the shape of the potential. The existence of a Bose-Einstein condensate changes the spectrum in a characteristic way so that it directly reflects the constant chemical potential of the excitons and the renormalization of the quasiparticle excitation spectrum. Typical examples are given for parameters of the lowest yellow excitons in cuprous oxide.
The system under consideration is a multi-component gas of interacting para- and orthoexcitons confined in a three dimensional potential trap. We calculate the spatially resolved optical emission spectrum due to interband transitions involving weak d
We study semiconductor excitons confined in an electrostatic trap of a GaAs bilayer heterostructure. We evidence that optically bright excitonic states are strongly depleted while cooling to sub-Kelvin temperatures. In return, the other accessible an
We have observed Bose-Einstein condensation of an atomic gas in the (quasi-)uniform three-dimensional potential of an optical box trap. Condensation is seen in the bimodal momentum distribution and the anisotropic time-of-flight expansion of the cond
We model the dynamics of condensation in a bimodal trap, consisting of a large reservoir region, and a tight dimple whose depth can be controlled. Experimental investigations have found that such dimple traps provide an efficient means of achieving c
We present the first experimental realisation of Bose-Einstein condensation in a purely magnetic double-well potential. This has been realised by combining a static Ioffe-Pritchard trap with a time orbiting potential (TOP). The double trap can be rap