Using observations of sunspot magnetic field strengths (H) from the Crimean Astrophysical Observatory (CrAO) and area (S) of sunspots from the Kislovodsk Mountain Astronomical Station of Pulkovo Observatory, we investigate the changes in the relation
between H and S over the period of about two solar cycles (1994-2013). The data were fitted by H = A + B log S, where A = (778+/-46) and B = (778+/-25). We show that the correlation between H and S varies with the phase of solar cycle, and $A$ coefficient decreases significantly after year 2001, while B coefficient does not change significantly. Furthermore, our data confirm the presence of two distinct populations in distribution of sunspots (small sunspots with weaker field strength and large sunspots with stronger field). We show that relative contribution of each component to the distribution of sunspots by their area changes with the phase of solar cycle and on longer-then-cycle periods. We interpret these changes as a signature of a long-term (centennial) variations in properties of sunspots.
Aims. We aim to investigate the long-term temporal evolution of the magnetic field of the solar-type star xi Bootis A, both from direct magnetic field measurements and from the simultaneous estimate of indirect activity indicators. Methods. We obtain
ed seven epochs of high-resolution, circularly-polarized spectra from the NARVAL spectropolarimeter between 2007 and 2011, for a total of 76 spectra. Using approximately 6,100 photospheric spectral lines covering the visible domain, we employed a cross-correlation procedure to compute a mean polarized line profile from each spectrum. The large-scale photospheric magnetic field of the star was then modelled by means of Zeeman-Doppler Imaging, allowing us to follow the year-to-year evolution of the reconstructed magnetic topology. Simultaneously, we monitored the width of several magnetically sensitive spectral lines, the radial velocity, the line asymmetry of intensity line profiles, and the chromospheric emission in the cores of the Ca II H and Halpha lines. Results. During the highest observed activity states, in 2007 and 2011, the large-scale field of xi Boo A is almost completely axisymmetric and is dominated by its toroidal component. The magnetic topologies reconstructed for these activity maxima are very similar, suggesting a form of short cyclicity in the large-scale field distribution. Correlated temporal evolution, due to both rotational modulation and seasonal variability, is observed between the Ca II emission, the Halpha emission and the width of magnetically sensitive lines. When measurable, the differential rotation reveals a strong latitudinal shear in excess of 0.2 rad/d.
Although timing variations in close binary systems have been studied for a long time, their underlying causes are still unclear. A possible explanation is the so-called Applegate mechanism, where a strong, variable magnetic field can periodically cha
nge the gravitational quadrupole moment of a stellar component, thus causing observable period changes. One of the systems exhibiting such strong orbital variations is the RS CVn binary HR 1099, whose activity cycle has been studied by various authors via photospheric and chromospheric activity indicators, resulting in contradicting periods. We aim at independently determining the magnetic activity cycle of HR 1099 using archival X-ray data to allow for a comparison to orbital period variations. Archival X-ray data from 80 different observations of HR 1099 acquired with 12 different X-ray facilities and covering almost four decades were used to determine X-ray fluxes in the energy range of 2-10 keV via spectral fitting and flux conversion. Via the Lomb-Scargle periodogram we analyze the resulting long-term X-ray light curve to search for periodicities. We do not detect any statistically significant periodicities within the X-ray data. An analysis of optical data of HR 1099 shows that the derivation of such periods is strongly dependent on the time coverage of available data, since the observed optical variations strongly deviate from a pure sine wave. We argue that this offers an explanation as to why other authors derive such a wide range of activity cycle periods based on optical data. We conclude that our analysis constitutes the longest stellar X-ray activity light curve acquired to date, yet the still rather sparse sampling of the X-ray data, along with stochastic flaring activity, does not allow for the independent determination of an X-ray activity cycle.
We present an analysis of all available time-resolved photometry from the literature and new light curves obtained in 2013-2014 for the old nova RR Pictoris. The well-known hump light curve phased with the orbital period reveals significant variation
s over the last 42 years in shape, amplitude and other details which apparently are caused by long-term variations in the disc structure. In addition we found evidence for the presence of superhumps in 2007, with the same period (~9% longer than the orbital period), as reported earlier by other authors from observations in 2005. Possibly, superhumps arise quickly in RR Pic, but are sporadic events, because in all the other observing runs analysed no significant superhump signal was detected. We also determined an actual version of the Stolz--Schoembs relation between superhump period and orbital period, analysing separately dwarf novae, classical novae and nova-like stars, and conclude that this relation is of general validity for all superhumpers among the cataclysmic variables (CVs), in spite of small but significant differences among the sub-types mentioned above. We emphasize the importance of such a study in context with the still open question of the interrelation between the different sub-classes of CVs, crucial for our understanding of the long-term CV evolution.
Long-term stellar activity variations can affect the detectability of long-period and Earth-analogue extrasolar planets. We have, for 54 stars, analysed the long-term trend of five activity indicators: log$R_mathrm{{HK}}$, the cross-correlation funct
ion (CCF) bisector span, CCF full-width-at-half-maximum, CCF contrast, and the area of the Gaussian fit to the CCF; and studied their correlation with the RVs. The sign of the correlations appears to vary as a function of stellar spectral type, and the transition in sign signals a noteworthy change in the stellar activity properties where earlier type stars appear more plage dominated. These transitions become more clearly defined when considered as a function of the convective zone depth. Therefore, it is the convective zone depth (which can be altered by stellar metallicity) that appears to be the underlying fundamental parameter driving the observed activity correlations. In addition, for most of the stars, we find that the RVs become increasingly red-shifted as activity levels increase, which can be explained by the increase in the suppression of convective blue-shift. However, we also find a minority of stars where the RVs become increasingly blue-shifted as activity levels increase. Finally, using the correlation found between activity indicators and RVs, we removed RV signals generated by long-term changes in stellar activity. We find that performing simple cleaning of such long-term signals enables improved planet detection at longer orbital periods.