ﻻ يوجد ملخص باللغة العربية
Let $Q(alpha)$ be the simplest cubic field, it is known that $Q(alpha)$ can be generated by adjoining a root of the irreducible equation $x^{3}-kx^{2}+(k-3)x+1=0$, where $k$ belongs to $Q$. In this paper we have established a relationship between $alpha$, $alpha$ and $k,k$ where $alpha$ is a root of the equation $x^{3}-kx^{2}+(k-3)x+1=0$ and $alpha$ is a root of the same equation with $k$ replaced by $k$ and $Q(alpha)=Q(alpha)$.
We prove Manins conjecture over imaginary quadratic number fields for a cubic surface with a singularity of type E_6.
Let $K$ be a number field, and let $E/K$ be an elliptic curve over $K$. The Mordell--Weil theorem asserts that the $K$-rational points $E(K)$ of $E$ form a finitely generated abelian group. In this work, we complete the classification of the finite g
We present a method for tabulating all cubic function fields over $mathbb{F}_q(t)$ whose discriminant $D$ has either odd degree or even degree and the leading coefficient of $-3D$ is a non-square in $mathbb{F}_{q}^*$, up to a given bound $B$ on the d
Manins conjecture predicts the asymptotic behavior of the number of rational points of bounded height on algebraic varieties. For toric varieties, it was proved by Batyrev and Tschinkel via height zeta functions and an application of the Poisson form
For a cubic algebraic extension $K$ of $mathbb{Q}$, the behavior of the ideal counting function is considered in this paper. Let $a_{K}(n)$ be the number of integral ideals of the field $K$ with norm $n$. An asymptotic formula is given for the sum $$