ﻻ يوجد ملخص باللغة العربية
We explore the phase diagram of two-component bosons with Feshbach resonant pairing interactions in an optical lattice. It has been shown in previous work to exhibit a rich variety of phases and phase transitions, including a paradigmatic Ising quantum phase transition within the second Mott lobe. We discuss the evolution of the phase diagram with system parameters and relate this to the predictions of Landau theory. We extend our exact diagonalization studies of the one-dimensional bosonic Hamiltonian and confirm additional Ising critical exponents for the longitudinal and transverse magnetic susceptibilities within the second Mott lobe. The numerical results for the ground state energy and transverse magnetization are in good agreement with exact solutions of the Ising model in the thermodynamic limit. We also provide details of the low-energy spectrum, as well as density fluctuations and superfluid fractions in the grand canonical ensemble.
Concentrating on bosonic lattice systems, we ask whether and how Excited State Quantum Phase Transition (ESQPT) singularities occur in condensed matter systems with ground state QPTs. We study in particular the spectral singularities above the ground
Considering nonintegrable quantum Ising chains with exponentially decaying interactions, we present matrix product state results that establish a connection between low-energy quasiparticle excitations and the kind of nonanalyticities in the Loschmid
We describe the zero-temperature phase diagram of a model of a two-dimensional square-lattice array of neutral atoms, excited into Rydberg states and interacting via strong van der Waals interactions. Using the density-matrix renormalization group al
We classify phases of a bosonic lattice model based on the computational complexity of classically simulating the system. We show that the system transitions from being classically simulable to classically hard to simulate as it evolves in time, exte
We investigate the disorder-driven phase transitions in bosonic fractional quantum Hall liquids at filling factors $f=1/2$ and $f=1$ in the lowest Landau level. We use the evolution of ground-state entanglement entropy, fidelity susceptibility, and H