ﻻ يوجد ملخص باللغة العربية
State-space models provide an important body of techniques for analyzing time-series, but their use requires estimating unobserved states. The optimal estimate of the state is its conditional expectation given the observation histories, and computing this expectation is hard when there are nonlinearities. Existing filtering methods, including sequential Monte Carlo, tend to be either inaccurate or slow. In this paper, we study a nonlinear filter for nonlinear/non-Gaussian state-space models, which uses Laplaces method, an asymptotic series expansion, to approximate the states conditional mean and variance, together with a Gaussian conditional distribution. This {em Laplace-Gaussian filter} (LGF) gives fast, recursive, deterministic state estimates, with an error which is set by the stochastic characteristics of the model and is, we show, stable over time. We illustrate the estimation ability of the LGF by applying it to the problem of neural decoding and compare it to sequential Monte Carlo both in simulations and with real data. We find that the LGF can deliver superior results in a small fraction of the computing time.
Identifying causal relationships is a challenging yet crucial problem in many fields of science like epidemiology, climatology, ecology, genomics, economics and neuroscience, to mention only a few. Recent studies have demonstrated that ordinal partit
This article addresses the problem of efficient Bayesian inference in dynamic systems using particle methods and makes a number of contributions. First, we develop a correlated pseudo-marginal (CPM) approach for Bayesian inference in state space (SS)
The complexity underlying real-world systems implies that standard statistical hypothesis testing methods may not be adequate for these peculiar applications. Specifically, we show that the likelihood-ratio tests null-distribution needs to be modifie
We propose a new class of filtering and smoothing methods for inference in high-dimensional, nonlinear, non-Gaussian, spatio-temporal state-space models. The main idea is to combine the ensemble Kalman filter and smoother, developed in the geophysics
Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to mode