ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximate Methods for State-Space Models

378   0   0.0 ( 0 )
 نشر من قبل Cosma Rohilla Shalizi
 تاريخ النشر 2010
والبحث باللغة English




اسأل ChatGPT حول البحث

State-space models provide an important body of techniques for analyzing time-series, but their use requires estimating unobserved states. The optimal estimate of the state is its conditional expectation given the observation histories, and computing this expectation is hard when there are nonlinearities. Existing filtering methods, including sequential Monte Carlo, tend to be either inaccurate or slow. In this paper, we study a nonlinear filter for nonlinear/non-Gaussian state-space models, which uses Laplaces method, an asymptotic series expansion, to approximate the states conditional mean and variance, together with a Gaussian conditional distribution. This {em Laplace-Gaussian filter} (LGF) gives fast, recursive, deterministic state estimates, with an error which is set by the stochastic characteristics of the model and is, we show, stable over time. We illustrate the estimation ability of the LGF by applying it to the problem of neural decoding and compare it to sequential Monte Carlo both in simulations and with real data. We find that the LGF can deliver superior results in a small fraction of the computing time.

قيم البحث

اقرأ أيضاً

Identifying causal relationships is a challenging yet crucial problem in many fields of science like epidemiology, climatology, ecology, genomics, economics and neuroscience, to mention only a few. Recent studies have demonstrated that ordinal partit ion transition networks (OPTNs) allow inferring the coupling direction between two dynamical systems. In this work, we generalize this concept to the study of the interactions among multiple dynamical systems and we propose a new method to detect causality in multivariate observational data. By applying this method to numerical simulations of coupled linear stochastic processes as well as two examples of interacting nonlinear dynamical systems (coupled Lorenz systems and a network of neural mass models), we demonstrate that our approach can reliably identify the direction of interactions and the associated coupling delays. Finally, we study real-world observational microelectrode array electrophysiology data from rodent brain slices to identify the causal coupling structures underlying epileptiform activity. Our results, both from simulations and real-world data, suggest that OPTNs can provide a complementary and robust approach to infer causal effect networks from multivariate observational data.
This article addresses the problem of efficient Bayesian inference in dynamic systems using particle methods and makes a number of contributions. First, we develop a correlated pseudo-marginal (CPM) approach for Bayesian inference in state space (SS) models that is based on filtering the disturbances, rather than the states. This approach is useful when the state transition density is intractable or inefficient to compute, and also when the dimension of the disturbance is lower than the dimension of the state. Second, we propose a block pseudo-marginal (BPM) method that uses as the estimate of the likelihood the average of G independent unbiased estimates of the likelihood. We associate a set of underlying uniform of standard normal random numbers used to construct each of the individual unbiased likelihood estimates and then use component-wise Markov Chain Monte Carlo to update the parameter vector jointly with one set of these random numbers at a time. This induces a correlation of approximately 1-1/G between the logs of the estimated likelihood at the proposed and current values of the model parameters. Third, we show for some non-stationary state space models that the BPM approach is much more efficient than the CPM approach, because it is difficult to translate the high correlation in the underlying random numbers to high correlation between the logs of the likelihood estimates. Although our focus has been on applying the BPM method to state space models, our results and approach can be used in a wide range of applications of the PM method, such as panel data models, subsampling problems and approximate Bayesian computation.
171 - Giona Casiraghi 2021
The complexity underlying real-world systems implies that standard statistical hypothesis testing methods may not be adequate for these peculiar applications. Specifically, we show that the likelihood-ratio tests null-distribution needs to be modifie d to accommodate the complexity found in multi-edge network data. When working with independent observations, the p-values of likelihood-ratio tests are approximated using a $chi^2$ distribution. However, such an approximation should not be used when dealing with multi-edge network data. This type of data is characterized by multiple correlations and competitions that make the standard approximation unsuitable. We provide a solution to the problem by providing a better approximation of the likelihood-ratio test null-distribution through a Beta distribution. Finally, we empirically show that even for a small multi-edge network, the standard $chi^2$ approximation provides erroneous results, while the proposed Beta approximation yields the correct p-value estimation.
We propose a new class of filtering and smoothing methods for inference in high-dimensional, nonlinear, non-Gaussian, spatio-temporal state-space models. The main idea is to combine the ensemble Kalman filter and smoother, developed in the geophysics literature, with state-space algorithms from the statistics literature. Our algorithms address a variety of estimation scenarios, including on-line and off-line state and parameter estimation. We take a Bayesian perspective, for which the goal is to generate samples from the joint posterior distribution of states and parameters. The key benefit of our approach is the use of ensemble Kalman methods for dimension reduction, which allows inference for high-dimensional state vectors. We compare our methods to existing ones, including ensemble Kalman filters, particle filters, and particle MCMC. Using a real data example of cloud motion and data simulated under a number of nonlinear and non-Gaussian scenarios, we show that our approaches outperform these existing methods.
156 - Umberto Picchini 2012
Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to mode l e.g. financial, neuronal and population growth dynamics. However inference for multidimensional SDE models is still very challenging, both computationally and theoretically. Approximate Bayesian computation (ABC) allow to perform Bayesian inference for models which are sufficiently complex that the likelihood function is either analytically unavailable or computationally prohibitive to evaluate. A computationally efficient ABC-MCMC algorithm is proposed, halving the running time in our simulations. Focus is on the case where the SDE describes latent dynamics in state-space models; however the methodology is not limited to the state-space framework. Simulation studies for a pharmacokinetics/pharmacodynamics model and for stochastic chemical reactions are considered and a MATLAB package implementing our ABC-MCMC algorithm is provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا