ﻻ يوجد ملخص باللغة العربية
We probe spin transport in Cu_{2}O by measuring spin valve effect in La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/Co and La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/La_{0.7}Sr_{0.3}MnO_{3} epitaxial heterostructures. In La_{0.7}Sr_{0.3}MnO_{3}/Cu_{2}O/Co systems we find that a fraction of out-of-equilibrium spin polarized carrier actually travel across the Cu_{2}O layer up to distances of almost 100 nm at low temperature. The corresponding spin diffusion length dspin is estimated around 40 nm. Furthermore, we find that the insertion of a SrTiO_{3} tunneling barrier does not improve spin injection, likely due to the matching of resistances at the interfaces. Our result on dspin may be likely improved, both in terms of Cu_{2}O crystalline quality and sub-micrometric morphology and in terms of device geometry, indicating that Cu_{2}O is a potential material for efficient spin transport in devices based on crystalline oxides.
Nonlinear charge transport in strongly coupled semiconductor superlattices is described by Wigner-Poisson kinetic equations involving one or two minibands. Electron-electron collisions are treated within the Hartree approximation whereas other inelas
We study the flow of a pure spin current through zinc oxide by measuring the spin Hall magnetoresistance (SMR) in thin film trilayer samples consisting of bismuth-substituted yttrium iron garnet (Bi:YIG), gallium-doped zinc oxide (Ga:ZnO), and platin
Inelastic neutron scattering measurements of paramagnetic SrCo$_{2}$As$_{2}$ at T=5 K reveal antiferromagnetic (AFM) spin fluctuations that are peaked at a wavevector of $textbf{Q}_{mathrm{AFM}}=(1/2,1/2,1)$ and possess a large energy scale. These st
We use a mapping of the multiband Hubbard model for $CuO_{3}$ chains in $RBa_{2}Cu_{3}0_{6+x}$ (R=Y or a rare earth) onto a $t-J$ model and the description of the charge dynamics of the latter in terms pf s spinless model, to study the electronic str
Future universal quantum computers solving problems of practical relevance are expected to require at least $10^6$ qubits, which is a massive scale-up from the present numbers of less than 50 qubits operated together. Out of the different types of qu